Adding DampedOscillator code (#6801)

* Adding DampedOscillator code

* Adding one more test case

* Adding one more test case

* Adding one more test case

* Fixing build issues.

* Fixing build issues.
This commit is contained in:
Yash Rajput
2025-10-17 02:49:09 +05:30
committed by GitHub
parent fb5a7653c1
commit e1773e9165
2 changed files with 252 additions and 0 deletions

View File

@@ -0,0 +1,143 @@
package com.thealgorithms.physics;
import static org.junit.jupiter.api.Assertions.assertAll;
import static org.junit.jupiter.api.Assertions.assertEquals;
import static org.junit.jupiter.api.Assertions.assertThrows;
import org.junit.jupiter.api.DisplayName;
import org.junit.jupiter.api.Test;
/**
* Unit tests for {@link DampedOscillator}.
*
* <p>Tests focus on:
* <ul>
* <li>Constructor validation</li>
* <li>Analytical displacement for underdamped and overdamped parameterizations</li>
* <li>Basic numeric integration sanity using explicit Euler for small step sizes</li>
* <li>Method argument validation (null/invalid inputs)</li>
* </ul>
*/
@DisplayName("DampedOscillator — unit tests")
public class DampedOscillatorTest {
private static final double TOLERANCE = 1e-3;
@Test
@DisplayName("Constructor rejects invalid parameters")
void constructorValidation() {
assertAll("invalid-constructor-params",
()
-> assertThrows(IllegalArgumentException.class, () -> new DampedOscillator(0.0, 0.1), "omega0 == 0 should throw"),
() -> assertThrows(IllegalArgumentException.class, () -> new DampedOscillator(-1.0, 0.1), "negative omega0 should throw"), () -> assertThrows(IllegalArgumentException.class, () -> new DampedOscillator(1.0, -0.1), "negative gamma should throw"));
}
@Test
@DisplayName("Analytical displacement matches expected formula for underdamped case")
void analyticalUnderdamped() {
double omega0 = 10.0;
double gamma = 0.5;
DampedOscillator d = new DampedOscillator(omega0, gamma);
double a = 1.0;
double phi = 0.2;
double t = 0.123;
// expected: a * exp(-gamma * t) * cos(omega_d * t + phi)
double omegaD = Math.sqrt(Math.max(0.0, omega0 * omega0 - gamma * gamma));
double expected = a * Math.exp(-gamma * t) * Math.cos(omegaD * t + phi);
double actual = d.displacementAnalytical(a, phi, t);
assertEquals(expected, actual, 1e-12, "Analytical underdamped displacement should match closed-form value");
}
@Test
@DisplayName("Analytical displacement gracefully handles overdamped parameters (omegaD -> 0)")
void analyticalOverdamped() {
double omega0 = 1.0;
double gamma = 2.0; // gamma > omega0 => omega_d = 0 in our implementation (Math.max)
DampedOscillator d = new DampedOscillator(omega0, gamma);
double a = 2.0;
double phi = Math.PI / 4.0;
double t = 0.5;
// With omegaD forced to 0 by implementation, expected simplifies to:
double expected = a * Math.exp(-gamma * t) * Math.cos(phi);
double actual = d.displacementAnalytical(a, phi, t);
assertEquals(expected, actual, 1e-12, "Overdamped handling should reduce to exponential * cos(phase)");
}
@Test
@DisplayName("Explicit Euler step approximates analytical solution for small dt over short time")
void eulerApproximatesAnalyticalSmallDt() {
double omega0 = 10.0;
double gamma = 0.5;
DampedOscillator d = new DampedOscillator(omega0, gamma);
double a = 1.0;
double phi = 0.0;
// initial conditions consistent with amplitude a and zero phase:
// x(0) = a, v(0) = -a * gamma * cos(phi) + a * omegaD * sin(phi)
double omegaD = Math.sqrt(Math.max(0.0, omega0 * omega0 - gamma * gamma));
double x0 = a * Math.cos(phi);
double v0 = -a * gamma * Math.cos(phi) - a * omegaD * Math.sin(phi); // small general form
double dt = 1e-4;
int steps = 1000; // simulate to t = 0.1s
double tFinal = steps * dt;
double[] state = new double[] {x0, v0};
for (int i = 0; i < steps; i++) {
state = d.stepEuler(state, dt);
}
double analyticAtT = d.displacementAnalytical(a, phi, tFinal);
double numericAtT = state[0];
// Euler is low-order — allow a small tolerance but assert it remains close for small dt + short time.
assertEquals(analyticAtT, numericAtT, TOLERANCE, String.format("Numeric Euler should approximate analytical solution at t=%.6f (tolerance=%g)", tFinal, TOLERANCE));
}
@Test
@DisplayName("stepEuler validates inputs and throws on null/invalid dt/state")
void eulerInputValidation() {
DampedOscillator d = new DampedOscillator(5.0, 0.1);
assertAll("invalid-stepEuler-args",
()
-> assertThrows(IllegalArgumentException.class, () -> d.stepEuler(null, 0.01), "null state should throw"),
()
-> assertThrows(IllegalArgumentException.class, () -> d.stepEuler(new double[] {1.0}, 0.01), "state array with invalid length should throw"),
() -> assertThrows(IllegalArgumentException.class, () -> d.stepEuler(new double[] {1.0, 0.0}, 0.0), "non-positive dt should throw"), () -> assertThrows(IllegalArgumentException.class, () -> d.stepEuler(new double[] {1.0, 0.0}, -1e-3), "negative dt should throw"));
}
@Test
@DisplayName("Getter methods return configured parameters")
void gettersReturnConfiguration() {
double omega0 = Math.PI;
double gamma = 0.01;
DampedOscillator d = new DampedOscillator(omega0, gamma);
assertAll("getters", () -> assertEquals(omega0, d.getOmega0(), 0.0, "getOmega0 should return configured omega0"), () -> assertEquals(gamma, d.getGamma(), 0.0, "getGamma should return configured gamma"));
}
@Test
@DisplayName("Analytical displacement at t=0 returns initial amplitude * cos(phase)")
void analyticalAtZeroTime() {
double omega0 = 5.0;
double gamma = 0.2;
DampedOscillator d = new DampedOscillator(omega0, gamma);
double a = 2.0;
double phi = Math.PI / 3.0;
double t = 0.0;
double expected = a * Math.cos(phi);
double actual = d.displacementAnalytical(a, phi, t);
assertEquals(expected, actual, 1e-12, "Displacement at t=0 should be a * cos(phase)");
}
}