mirror of
https://github.com/TheAlgorithms/Java.git
synced 2025-07-05 16:27:33 +08:00
Add Constrained Shortest Path Problem (CSPP) / Shortest Path Problem with Resource Constraints (SPPRC) (#6155)
This commit is contained in:
@ -0,0 +1,123 @@
|
||||
package com.thealgorithms.graph;
|
||||
|
||||
import java.util.ArrayList;
|
||||
import java.util.Arrays;
|
||||
import java.util.List;
|
||||
|
||||
/**
|
||||
* This class implements a solution for the Constrained Shortest Path Problem (CSPP).
|
||||
* also known as Shortest Path Problem with Resource Constraints (SPPRC).
|
||||
* The goal is to find the shortest path between two nodes while ensuring that
|
||||
* the resource constraint is not exceeded.
|
||||
*
|
||||
* @author <a href="https://github.com/DenizAltunkapan">Deniz Altunkapan</a>
|
||||
*/
|
||||
public class ConstrainedShortestPath {
|
||||
|
||||
/**
|
||||
* Represents a graph using an adjacency list.
|
||||
* This graph is designed for the Constrained Shortest Path Problem (CSPP).
|
||||
*/
|
||||
public static class Graph {
|
||||
|
||||
private List<List<Edge>> adjacencyList;
|
||||
|
||||
public Graph(int numNodes) {
|
||||
adjacencyList = new ArrayList<>();
|
||||
for (int i = 0; i < numNodes; i++) {
|
||||
adjacencyList.add(new ArrayList<>());
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Adds an edge to the graph.
|
||||
* @param from the starting node
|
||||
* @param to the ending node
|
||||
* @param cost the cost of the edge
|
||||
* @param resource the resource required to traverse the edge
|
||||
*/
|
||||
public void addEdge(int from, int to, int cost, int resource) {
|
||||
adjacencyList.get(from).add(new Edge(from, to, cost, resource));
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets the edges that are adjacent to a given node.
|
||||
* @param node the node to get the edges for
|
||||
* @return the list of edges adjacent to the node
|
||||
*/
|
||||
public List<Edge> getEdges(int node) {
|
||||
return adjacencyList.get(node);
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets the number of nodes in the graph.
|
||||
* @return the number of nodes
|
||||
*/
|
||||
public int getNumNodes() {
|
||||
return adjacencyList.size();
|
||||
}
|
||||
|
||||
public record Edge(int from, int to, int cost, int resource) {
|
||||
}
|
||||
}
|
||||
|
||||
private Graph graph;
|
||||
private int maxResource;
|
||||
|
||||
/**
|
||||
* Constructs a CSPSolver with the given graph and maximum resource constraint.
|
||||
*
|
||||
* @param graph the graph representing the problem
|
||||
* @param maxResource the maximum allowable resource
|
||||
*/
|
||||
public ConstrainedShortestPath(Graph graph, int maxResource) {
|
||||
this.graph = graph;
|
||||
this.maxResource = maxResource;
|
||||
}
|
||||
|
||||
/**
|
||||
* Solves the CSP to find the shortest path from the start node to the target node
|
||||
* without exceeding the resource constraint.
|
||||
*
|
||||
* @param start the starting node
|
||||
* @param target the target node
|
||||
* @return the minimum cost to reach the target node within the resource constraint,
|
||||
* or -1 if no valid path exists
|
||||
*/
|
||||
public int solve(int start, int target) {
|
||||
int numNodes = graph.getNumNodes();
|
||||
int[][] dp = new int[maxResource + 1][numNodes];
|
||||
|
||||
// Initialize dp table with maximum values
|
||||
for (int i = 0; i <= maxResource; i++) {
|
||||
Arrays.fill(dp[i], Integer.MAX_VALUE);
|
||||
}
|
||||
dp[0][start] = 0;
|
||||
|
||||
// Dynamic Programming: Iterate over resources and nodes
|
||||
for (int r = 0; r <= maxResource; r++) {
|
||||
for (int u = 0; u < numNodes; u++) {
|
||||
if (dp[r][u] == Integer.MAX_VALUE) {
|
||||
continue;
|
||||
}
|
||||
for (Graph.Edge edge : graph.getEdges(u)) {
|
||||
int v = edge.to();
|
||||
int cost = edge.cost();
|
||||
int resource = edge.resource();
|
||||
|
||||
if (r + resource <= maxResource) {
|
||||
dp[r + resource][v] = Math.min(dp[r + resource][v], dp[r][u] + cost);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Find the minimum cost to reach the target node
|
||||
int minCost = Integer.MAX_VALUE;
|
||||
for (int r = 0; r <= maxResource; r++) {
|
||||
minCost = Math.min(minCost, dp[r][target]);
|
||||
}
|
||||
|
||||
return minCost == Integer.MAX_VALUE ? -1 : minCost;
|
||||
}
|
||||
}
|
Reference in New Issue
Block a user