refactor: LineSweep (#5398)

This commit is contained in:
Alex Klymenko
2024-08-26 08:45:07 +02:00
committed by GitHub
parent 6edc009765
commit cdb6412601
2 changed files with 57 additions and 43 deletions

View File

@ -1,42 +1,49 @@
package com.thealgorithms.others;
import java.util.Arrays;
import java.util.Comparator;
/* Line Sweep algorithm can be used to solve range problems by first sorting the list of ranges
* by the start value of the range in non-decreasing order and doing a "sweep" through the number
* line(x-axis) by incrementing the start point by 1 and decrementing the end point+1 by 1 on the
* number line.
* An overlapping range is defined as (StartA <= EndB) AND (EndA >= StartB)
* References
* https://en.wikipedia.org/wiki/Sweep_line_algorithm
* https://en.wikipedia.org/wiki/De_Morgan%27s_laws>
/**
* The Line Sweep algorithm is used to solve range problems efficiently. It works by:
* 1. Sorting a list of ranges by their start values in non-decreasing order.
* 2. Sweeping through the number line (x-axis) while updating a count for each point based on the ranges.
*
* An overlapping range is defined as:
* - (StartA <= EndB) AND (EndA >= StartB)
*
* References:
* - https://en.wikipedia.org/wiki/Sweep_line_algorithm
* - https://en.wikipedia.org/wiki/De_Morgan%27s_laws
*/
public final class LineSweep {
private LineSweep() {
}
/**
* Find Maximum end point
* param = ranges : Array of range[start,end]
* return Maximum Endpoint
* Finds the maximum endpoint from a list of ranges.
*
* @param ranges a 2D array where each element is a range represented by [start, end]
* @return the maximum endpoint among all ranges
*/
public static int findMaximumEndPoint(int[][] ranges) {
Arrays.sort(ranges, Comparator.comparingInt(a -> a[1]));
Arrays.sort(ranges, Comparator.comparingInt(range -> range[1]));
return ranges[ranges.length - 1][1];
}
/**
* Find if any ranges overlap
* param = ranges : Array of range[start,end]
* return true if overlap exists false otherwise.
* Determines if any of the given ranges overlap.
*
* @param ranges a 2D array where each element is a range represented by [start, end]
* @return true if any ranges overlap, false otherwise
*/
public static boolean isOverlap(int[][] ranges) {
if (ranges == null || ranges.length == 0) {
return false;
}
int maximumEndPoint = findMaximumEndPoint(ranges);
Arrays.sort(ranges, Comparator.comparingInt(a -> a[0]));
int[] numberLine = new int[maximumEndPoint + 2];
for (int[] range : ranges) {
int start = range[0];
int end = range[1];
@ -44,12 +51,12 @@ public final class LineSweep {
numberLine[end + 1] -= 1;
}
int current = 0;
int overlaps = 0;
for (int num : numberLine) {
current += num;
overlaps = Math.max(overlaps, current);
int currentCount = 0;
int maxOverlaps = 0;
for (int count : numberLine) {
currentCount += count;
maxOverlaps = Math.max(maxOverlaps, currentCount);
}
return overlaps > 1;
return maxOverlaps > 1;
}
}