mirror of
https://github.com/TheAlgorithms/Java.git
synced 2025-07-06 17:29:31 +08:00
refactor: LineSweep
(#5398)
This commit is contained in:
@ -1,42 +1,49 @@
|
||||
package com.thealgorithms.others;
|
||||
|
||||
import java.util.Arrays;
|
||||
import java.util.Comparator;
|
||||
|
||||
/* Line Sweep algorithm can be used to solve range problems by first sorting the list of ranges
|
||||
* by the start value of the range in non-decreasing order and doing a "sweep" through the number
|
||||
* line(x-axis) by incrementing the start point by 1 and decrementing the end point+1 by 1 on the
|
||||
* number line.
|
||||
* An overlapping range is defined as (StartA <= EndB) AND (EndA >= StartB)
|
||||
* References
|
||||
* https://en.wikipedia.org/wiki/Sweep_line_algorithm
|
||||
* https://en.wikipedia.org/wiki/De_Morgan%27s_laws>
|
||||
/**
|
||||
* The Line Sweep algorithm is used to solve range problems efficiently. It works by:
|
||||
* 1. Sorting a list of ranges by their start values in non-decreasing order.
|
||||
* 2. Sweeping through the number line (x-axis) while updating a count for each point based on the ranges.
|
||||
*
|
||||
* An overlapping range is defined as:
|
||||
* - (StartA <= EndB) AND (EndA >= StartB)
|
||||
*
|
||||
* References:
|
||||
* - https://en.wikipedia.org/wiki/Sweep_line_algorithm
|
||||
* - https://en.wikipedia.org/wiki/De_Morgan%27s_laws
|
||||
*/
|
||||
public final class LineSweep {
|
||||
private LineSweep() {
|
||||
}
|
||||
|
||||
/**
|
||||
* Find Maximum end point
|
||||
* param = ranges : Array of range[start,end]
|
||||
* return Maximum Endpoint
|
||||
* Finds the maximum endpoint from a list of ranges.
|
||||
*
|
||||
* @param ranges a 2D array where each element is a range represented by [start, end]
|
||||
* @return the maximum endpoint among all ranges
|
||||
*/
|
||||
public static int findMaximumEndPoint(int[][] ranges) {
|
||||
Arrays.sort(ranges, Comparator.comparingInt(a -> a[1]));
|
||||
Arrays.sort(ranges, Comparator.comparingInt(range -> range[1]));
|
||||
return ranges[ranges.length - 1][1];
|
||||
}
|
||||
|
||||
/**
|
||||
* Find if any ranges overlap
|
||||
* param = ranges : Array of range[start,end]
|
||||
* return true if overlap exists false otherwise.
|
||||
* Determines if any of the given ranges overlap.
|
||||
*
|
||||
* @param ranges a 2D array where each element is a range represented by [start, end]
|
||||
* @return true if any ranges overlap, false otherwise
|
||||
*/
|
||||
public static boolean isOverlap(int[][] ranges) {
|
||||
if (ranges == null || ranges.length == 0) {
|
||||
return false;
|
||||
}
|
||||
|
||||
int maximumEndPoint = findMaximumEndPoint(ranges);
|
||||
Arrays.sort(ranges, Comparator.comparingInt(a -> a[0]));
|
||||
int[] numberLine = new int[maximumEndPoint + 2];
|
||||
for (int[] range : ranges) {
|
||||
|
||||
int start = range[0];
|
||||
int end = range[1];
|
||||
|
||||
@ -44,12 +51,12 @@ public final class LineSweep {
|
||||
numberLine[end + 1] -= 1;
|
||||
}
|
||||
|
||||
int current = 0;
|
||||
int overlaps = 0;
|
||||
for (int num : numberLine) {
|
||||
current += num;
|
||||
overlaps = Math.max(overlaps, current);
|
||||
int currentCount = 0;
|
||||
int maxOverlaps = 0;
|
||||
for (int count : numberLine) {
|
||||
currentCount += count;
|
||||
maxOverlaps = Math.max(maxOverlaps, currentCount);
|
||||
}
|
||||
return overlaps > 1;
|
||||
return maxOverlaps > 1;
|
||||
}
|
||||
}
|
||||
|
Reference in New Issue
Block a user