Fix formatting (#4259)

Co-authored-by: Ranjeet Kumar Jena <ranjeetjena06@gmai.com>
Co-authored-by: Andrii Siriak <siryaka@gmail.com>
This commit is contained in:
Ranjeet Kumar Jena
2023-07-27 08:50:47 +05:30
committed by GitHub
parent de50fc0294
commit cc9afea036
8 changed files with 21 additions and 21 deletions

View File

@ -10,10 +10,10 @@ import com.thealgorithms.datastructures.trees.BinaryTree.Node;
* <p>
* An implementation of BST iteratively. Binary Search Tree is a binary tree
* which satisfies three properties: left child is less than root node, right
* child is grater than root node, both left and right childs must themselves be
* child is grater than root node, both left and right child must themselves be
* a BST.
*
* @author [Lakhan Nad](https://github.com/Lakhan-Nad)
* @author [Lakhan Nad](<a href="https://github.com/Lakhan-Nad">git-Lakhan Nad</a>)
*/
public class BSTIterative {

View File

@ -17,7 +17,7 @@ import com.thealgorithms.datastructures.trees.BinaryTree.Node;
* I have made public functions as methods and to actually implement recursive
* approach I have used private methods
*
* @author [Lakhan Nad](https://github.com/Lakhan-Nad)
* @author [Lakhan Nad](<a href="https://github.com/Lakhan-Nad">git-Lakhan Nad</a>)
*/
public class BSTRecursive {

View File

@ -9,10 +9,10 @@ import java.util.List;
* <p>
* A recursive implementation of generic type BST.
*
* Reference: https://en.wikipedia.org/wiki/Binary_search_tree
* Reference: <a href="https://en.wikipedia.org/wiki/Binary_search_tree">Wiki links for BST</a>
* </p>
*
* @author [Madhur Panwar](https://github.com/mdrpanwar)
* @author [Madhur Panwar](<a href="https://github.com/mdrpanwar">git-Madhur Panwar</a>)
*/
public class BSTRecursiveGeneric<T extends Comparable<T>> {
@ -219,7 +219,7 @@ public class BSTRecursiveGeneric<T extends Comparable<T>> {
}
/**
* Serach recursively if the given value is present in BST or not.
* Search recursively if the given value is present in BST or not.
*
* @param node the node under which to check
* @param data the value to be checked

View File

@ -39,7 +39,7 @@ import com.thealgorithms.datastructures.trees.BinaryTree.Node;
* ii) If key is lesser than root value than ceil will be in right subtree so
* call recursively on right subtree iii) if key is greater than current root,
* then either a) the root is ceil b) ceil is in left subtree: call for left
* subtree. If left subtree returns a non null value then that will be ceil
* subtree. If left subtree returns a non-null value then that will be ceil
* otherwise the root is ceil
*/
public class CeilInBinarySearchTree {

View File

@ -12,7 +12,7 @@ import java.util.Stack;
* `isBalancedRecursive()` is implemented in a recursive fashion, and
* `isBalancedIterative()` is implemented in an iterative fashion.
*
* @author [Ian Cowan](https://github.com/iccowan)
* @author [Ian Cowan](<a href="https://github.com/iccowan">Git-Ian Cowan</a>)
*/
public class CheckIfBinaryTreeBalanced {
/**

View File

@ -39,16 +39,16 @@ public class CheckTreeIsSymmetric {
return isSymmetric(root.left, root.right);
}
private static boolean isSymmetric(Node leftSubtreeRoot, Node rightSubtreRoot) {
if (leftSubtreeRoot == null && rightSubtreRoot == null) {
private static boolean isSymmetric(Node leftSubtreeRoot, Node rightSubtreeRoot) {
if (leftSubtreeRoot == null && rightSubtreeRoot == null) {
return true;
}
if (isInvalidSubtree(leftSubtreeRoot, rightSubtreRoot)) {
if (isInvalidSubtree(leftSubtreeRoot, rightSubtreeRoot)) {
return false;
}
return isSymmetric(leftSubtreeRoot.right, rightSubtreRoot.left) && isSymmetric(leftSubtreeRoot.left, rightSubtreRoot.right);
return isSymmetric(leftSubtreeRoot.right, rightSubtreeRoot.left) && isSymmetric(leftSubtreeRoot.left, rightSubtreeRoot.right);
}
private static boolean isInvalidSubtree(Node leftSubtreeRoot, Node rightSubtreeRoot) {

View File

@ -16,32 +16,32 @@ import java.util.Scanner;
*/
public class GenericTree {
private class Node {
private static class Node {
int data;
ArrayList<Node> child = new ArrayList<>();
}
private Node root;
private final Node root;
public GenericTree() { // Constructor
Scanner scn = new Scanner(System.in);
root = create_treeG(null, 0, scn);
}
private Node create_treeG(Node node, int childindx, Scanner scn) {
private Node create_treeG(Node node, int childIndex, Scanner scanner) {
// display
if (node == null) {
System.out.println("Enter root's data");
} else {
System.out.println("Enter data of parent of index " + node.data + " " + childindx);
System.out.println("Enter data of parent of index " + node.data + " " + childIndex);
}
// input
node = new Node();
node.data = scn.nextInt();
node.data = scanner.nextInt();
System.out.println("number of children");
int number = scn.nextInt();
int number = scanner.nextInt();
for (int i = 0; i < number; i++) {
Node child = create_treeG(node, i, scn);
Node child = create_treeG(node, i, scanner);
node.child.add(child);
}
return node;

View File

@ -5,7 +5,7 @@ import java.util.Scanner;
public class LCA {
private static Scanner scanner = new Scanner(System.in);
private static final Scanner scanner = new Scanner(System.in);
public static void main(String[] args) {
// The adjacency list representation of a tree:
@ -91,7 +91,7 @@ public class LCA {
return v1;
}
}
/**
/*
* Input:
* 10
* 0 1