mirror of
https://github.com/TheAlgorithms/Java.git
synced 2025-07-23 20:44:39 +08:00
Formatted with Google Java Formatter
This commit is contained in:
@ -3,67 +3,59 @@ package com.maths;
|
||||
import java.util.ArrayList;
|
||||
|
||||
/**
|
||||
* Class for calculating the Fast Fourier Transform (FFT) of a discrete signal using the Bluestein's algorithm.
|
||||
* Class for calculating the Fast Fourier Transform (FFT) of a discrete signal using the Bluestein's
|
||||
* algorithm.
|
||||
*
|
||||
* @author Ioannis Karavitsis
|
||||
* @version 1.0
|
||||
* */
|
||||
public class FFTBluestein
|
||||
{
|
||||
/**
|
||||
* Bluestein's FFT Algorithm.
|
||||
*
|
||||
* More info:
|
||||
* https://en.wikipedia.org/wiki/Chirp_Z-transform#Bluestein.27s_algorithm
|
||||
* http://tka4.org/materials/lib/Articles-Books/Numerical%20Algorithms/Hartley_Trasform/Bluestein%27s%20FFT%20algorithm%20-%20Wikipedia,%20the%20free%20encyclopedia.htm
|
||||
*
|
||||
* @param x The discrete signal which is then converted to the FFT or the IFFT of signal x.
|
||||
* @param inverse True if you want to find the inverse FFT.
|
||||
* */
|
||||
public static void fftBluestein(ArrayList<FFT.Complex> x, boolean inverse)
|
||||
{
|
||||
int N = x.size();
|
||||
int bnSize = 2*N - 1;
|
||||
int direction = inverse ? -1 : 1;
|
||||
ArrayList<FFT.Complex> an = new ArrayList<>();
|
||||
ArrayList<FFT.Complex> bn = new ArrayList<>();
|
||||
*/
|
||||
public class FFTBluestein {
|
||||
/**
|
||||
* Bluestein's FFT Algorithm.
|
||||
*
|
||||
* <p>More info: https://en.wikipedia.org/wiki/Chirp_Z-transform#Bluestein.27s_algorithm
|
||||
* http://tka4.org/materials/lib/Articles-Books/Numerical%20Algorithms/Hartley_Trasform/Bluestein%27s%20FFT%20algorithm%20-%20Wikipedia,%20the%20free%20encyclopedia.htm
|
||||
*
|
||||
* @param x The discrete signal which is then converted to the FFT or the IFFT of signal x.
|
||||
* @param inverse True if you want to find the inverse FFT.
|
||||
*/
|
||||
public static void fftBluestein(ArrayList<FFT.Complex> x, boolean inverse) {
|
||||
int N = x.size();
|
||||
int bnSize = 2 * N - 1;
|
||||
int direction = inverse ? -1 : 1;
|
||||
ArrayList<FFT.Complex> an = new ArrayList<>();
|
||||
ArrayList<FFT.Complex> bn = new ArrayList<>();
|
||||
|
||||
/* Initialization of the b(n) sequence (see Wikipedia's article above for the symbols used)*/
|
||||
for(int i = 0; i < bnSize; i++)
|
||||
bn.add(new FFT.Complex());
|
||||
/* Initialization of the b(n) sequence (see Wikipedia's article above for the symbols used)*/
|
||||
for (int i = 0; i < bnSize; i++) bn.add(new FFT.Complex());
|
||||
|
||||
for(int i = 0; i < N; i++)
|
||||
{
|
||||
double angle = (i - N + 1) * (i - N + 1) * Math.PI / N * direction;
|
||||
bn.set(i, new FFT.Complex(Math.cos(angle), Math.sin(angle)));
|
||||
bn.set(bnSize - i - 1, new FFT.Complex(Math.cos(angle), Math.sin(angle)));
|
||||
}
|
||||
|
||||
/* Initialization of the a(n) sequence */
|
||||
for(int i = 0; i < N; i++)
|
||||
{
|
||||
double angle = -i * i * Math.PI / N * direction;
|
||||
an.add(x.get(i).multiply(new FFT.Complex(Math.cos(angle), Math.sin(angle))));
|
||||
}
|
||||
|
||||
ArrayList<FFT.Complex> convolution = ConvolutionFFT.convolutionFFT(an, bn);
|
||||
|
||||
/* The final multiplication of the convolution with the b*(k) factor */
|
||||
for(int i = 0; i < N; i++)
|
||||
{
|
||||
double angle = -1 * i * i * Math.PI / N * direction;
|
||||
FFT.Complex bk = new FFT.Complex(Math.cos(angle), Math.sin(angle));
|
||||
x.set(i, bk.multiply(convolution.get(i + N - 1)));
|
||||
}
|
||||
|
||||
/* Divide by N if we want the inverse FFT */
|
||||
if(inverse)
|
||||
{
|
||||
for (int i = 0; i < N; i++)
|
||||
{
|
||||
FFT.Complex z = x.get(i);
|
||||
x.set(i, z.divide(N));
|
||||
}
|
||||
}
|
||||
for (int i = 0; i < N; i++) {
|
||||
double angle = (i - N + 1) * (i - N + 1) * Math.PI / N * direction;
|
||||
bn.set(i, new FFT.Complex(Math.cos(angle), Math.sin(angle)));
|
||||
bn.set(bnSize - i - 1, new FFT.Complex(Math.cos(angle), Math.sin(angle)));
|
||||
}
|
||||
|
||||
/* Initialization of the a(n) sequence */
|
||||
for (int i = 0; i < N; i++) {
|
||||
double angle = -i * i * Math.PI / N * direction;
|
||||
an.add(x.get(i).multiply(new FFT.Complex(Math.cos(angle), Math.sin(angle))));
|
||||
}
|
||||
|
||||
ArrayList<FFT.Complex> convolution = ConvolutionFFT.convolutionFFT(an, bn);
|
||||
|
||||
/* The final multiplication of the convolution with the b*(k) factor */
|
||||
for (int i = 0; i < N; i++) {
|
||||
double angle = -1 * i * i * Math.PI / N * direction;
|
||||
FFT.Complex bk = new FFT.Complex(Math.cos(angle), Math.sin(angle));
|
||||
x.set(i, bk.multiply(convolution.get(i + N - 1)));
|
||||
}
|
||||
|
||||
/* Divide by N if we want the inverse FFT */
|
||||
if (inverse) {
|
||||
for (int i = 0; i < N; i++) {
|
||||
FFT.Complex z = x.get(i);
|
||||
x.set(i, z.divide(N));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
Reference in New Issue
Block a user