Add Javadoc comments (#4745)

This commit is contained in:
D.Sunil
2023-11-12 02:25:48 +05:30
committed by GitHub
parent 574138c7a3
commit c527dff92d

View File

@ -1,32 +1,37 @@
package com.thealgorithms.dynamicprogramming; package com.thealgorithms.dynamicprogramming;
/** /**
* A DynamicProgramming solution for Rod cutting problem Returns the best * A Dynamic Programming solution for the Rod cutting problem.
* obtainable price for a rod of length n and price[] as prices of different * Returns the best obtainable price for a rod of length n and price[] as prices of different pieces.
* pieces
*/ */
public class RodCutting { public class RodCutting {
private static int cutRod(int[] price, int n) { /**
* This method calculates the maximum obtainable value for cutting a rod of length n
* into different pieces, given the prices for each possible piece length.
*
* @param price An array representing the prices of different pieces, where price[i-1]
* represents the price of a piece of length i.
* @param n The length of the rod to be cut.
* @return The maximum obtainable value.
*/
public static int cutRod(int[] price, int n) {
// Create an array to store the maximum obtainable values for each rod length.
int[] val = new int[n + 1]; int[] val = new int[n + 1];
val[0] = 0; val[0] = 0;
// Calculate the maximum value for each rod length from 1 to n.
for (int i = 1; i <= n; i++) { for (int i = 1; i <= n; i++) {
int max_val = Integer.MIN_VALUE; int maxVal = Integer.MIN_VALUE;
for (int j = 0; j < i; j++) { // Try all possible ways to cut the rod and find the maximum value.
max_val = Math.max(max_val, price[j] + val[i - j - 1]); for (int j = 1; j <= i; j++) {
maxVal = Math.max(maxVal, price[j - 1] + val[i - j]);
} }
// Store the maximum value for the current rod length.
val[i] = max_val; val[i] = maxVal;
} }
// The final element of 'val' contains the maximum obtainable value for a rod of length 'n'.
return val[n]; return val[n];
} }
// main function to test
public static void main(String[] args) {
int[] arr = new int[] {2, 5, 13, 19, 20};
int result = cutRod(arr, arr.length);
System.out.println("Maximum Obtainable Value is " + result);
}
} }