Add QuadraticEquationSolver and test cases (#5619)

This commit is contained in:
Sailok Chinta
2024-10-08 02:47:45 +05:30
committed by GitHub
parent 5dcf6c0f29
commit bd9e324e8c
3 changed files with 111 additions and 0 deletions

View File

@ -377,6 +377,7 @@
* [PrimeFactorization](https://github.com/TheAlgorithms/Java/blob/master/src/main/java/com/thealgorithms/maths/PrimeFactorization.java)
* [PronicNumber](https://github.com/TheAlgorithms/Java/blob/master/src/main/java/com/thealgorithms/maths/PronicNumber.java)
* [PythagoreanTriple](https://github.com/TheAlgorithms/Java/blob/master/src/main/java/com/thealgorithms/maths/PythagoreanTriple.java)
* [QuadraticEquationSolver](https://github.com/TheAlgorithms/Java/blob/master/src/main/java/com/thealgorithms/maths/QuadraticEquationSolver.java)
* [ReverseNumber](https://github.com/TheAlgorithms/Java/blob/master/src/main/java/com/thealgorithms/maths/ReverseNumber.java)
* [RomanNumeralUtil](https://github.com/TheAlgorithms/Java/blob/master/src/main/java/com/thealgorithms/maths/RomanNumeralUtil.java)
* [SecondMinMax](https://github.com/TheAlgorithms/Java/blob/master/src/main/java/com/thealgorithms/maths/SecondMinMax.java)

View File

@ -0,0 +1,60 @@
package com.thealgorithms.maths;
/**
* This class represents a complex number which has real and imaginary part
*/
class ComplexNumber {
Double real;
Double imaginary;
ComplexNumber(double real, double imaginary) {
this.real = real;
this.imaginary = imaginary;
}
ComplexNumber(double real) {
this.real = real;
this.imaginary = null;
}
}
/**
* Quadratic Equation Formula is used to find
* the roots of a quadratic equation of the form ax^2 + bx + c = 0
*
* @see <a href="https://en.wikipedia.org/wiki/Quadratic_equation">Quadratic Equation</a>
*/
public class QuadraticEquationSolver {
/**
* Function takes in the coefficients of the quadratic equation
*
* @param a is the coefficient of x^2
* @param b is the coefficient of x
* @param c is the constant
* @return roots of the equation which are ComplexNumber type
*/
public ComplexNumber[] solveEquation(double a, double b, double c) {
double discriminant = b * b - 4 * a * c;
// if discriminant is positive, roots will be different
if (discriminant > 0) {
return new ComplexNumber[] {new ComplexNumber((-b + Math.sqrt(discriminant)) / (2 * a)), new ComplexNumber((-b - Math.sqrt(discriminant)) / (2 * a))};
}
// if discriminant is zero, roots will be same
if (discriminant == 0) {
return new ComplexNumber[] {new ComplexNumber((-b) / (2 * a))};
}
// if discriminant is negative, roots will have imaginary parts
if (discriminant < 0) {
double realPart = -b / (2 * a);
double imaginaryPart = Math.sqrt(-discriminant) / (2 * a);
return new ComplexNumber[] {new ComplexNumber(realPart, imaginaryPart), new ComplexNumber(realPart, -imaginaryPart)};
}
// return no roots
return new ComplexNumber[] {};
}
}

View File

@ -0,0 +1,50 @@
package com.thealgorithms.maths;
import org.junit.jupiter.api.Assertions;
import org.junit.jupiter.api.Test;
public class QuadraticEquationSolverTest {
private final QuadraticEquationSolver quadraticEquationSolver = new QuadraticEquationSolver();
@Test
public void testSolveEquationRealRoots() {
// 4.2x^2 + 8x + 1.9 = 0
double a = 4.2;
double b = 8;
double c = 1.9;
ComplexNumber[] roots = quadraticEquationSolver.solveEquation(a, b, c);
Assertions.assertEquals(roots.length, 2);
Assertions.assertEquals(roots[0].real, -0.27810465435684306);
Assertions.assertNull(roots[0].imaginary);
Assertions.assertEquals(roots[1].real, -1.6266572504050616);
Assertions.assertNull(roots[1].imaginary);
}
@Test
public void testSolveEquationEqualRoots() {
// x^2 + 2x + 1 = 0
double a = 1;
double b = 2;
double c = 1;
ComplexNumber[] roots = quadraticEquationSolver.solveEquation(a, b, c);
Assertions.assertEquals(roots.length, 1);
Assertions.assertEquals(roots[0].real, -1);
}
@Test
public void testSolveEquationComplexRoots() {
// 2.3x^2 + 4x + 5.6 = 0
double a = 2.3;
double b = 4;
double c = 5.6;
ComplexNumber[] roots = quadraticEquationSolver.solveEquation(a, b, c);
Assertions.assertEquals(roots.length, 2);
Assertions.assertEquals(roots[0].real, -0.8695652173913044);
Assertions.assertEquals(roots[0].imaginary, 1.2956229935435948);
Assertions.assertEquals(roots[1].real, -0.8695652173913044);
Assertions.assertEquals(roots[1].imaginary, -1.2956229935435948);
}
}