mirror of
https://github.com/TheAlgorithms/Java.git
synced 2025-07-07 01:35:16 +08:00
Add Sliding Window algorithm and tests for maximum sum of subarray (#6001)
This commit is contained in:
@ -0,0 +1,50 @@
|
||||
package com.thealgorithms.slidingwindow;
|
||||
|
||||
/**
|
||||
* The Sliding Window algorithm is used to find the maximum sum of a subarray
|
||||
* of a fixed size k within a given array.
|
||||
*
|
||||
* <p>
|
||||
* Worst-case performance O(n)
|
||||
* Best-case performance O(n)
|
||||
* Average performance O(n)
|
||||
* Worst-case space complexity O(1)
|
||||
*
|
||||
* @author Your Name (https://github.com/Chiefpatwal)
|
||||
*/
|
||||
public final class MaxSumKSizeSubarray {
|
||||
|
||||
// Prevent instantiation
|
||||
private MaxSumKSizeSubarray() {
|
||||
}
|
||||
|
||||
/**
|
||||
* This method finds the maximum sum of a subarray of a given size k.
|
||||
*
|
||||
* @param arr is the input array where the maximum sum needs to be found
|
||||
* @param k is the size of the subarray
|
||||
* @return the maximum sum of the subarray of size k
|
||||
*/
|
||||
public static int maxSumKSizeSubarray(int[] arr, int k) {
|
||||
if (arr.length < k) {
|
||||
return -1; // Edge case: not enough elements
|
||||
}
|
||||
|
||||
int maxSum;
|
||||
int windowSum = 0;
|
||||
|
||||
// Calculate the sum of the first window
|
||||
for (int i = 0; i < k; i++) {
|
||||
windowSum += arr[i];
|
||||
}
|
||||
maxSum = windowSum;
|
||||
|
||||
// Slide the window across the array
|
||||
for (int i = k; i < arr.length; i++) {
|
||||
windowSum += arr[i] - arr[i - k];
|
||||
maxSum = Math.max(maxSum, windowSum);
|
||||
}
|
||||
|
||||
return maxSum;
|
||||
}
|
||||
}
|
@ -0,0 +1,79 @@
|
||||
package com.thealgorithms.slidingwindow;
|
||||
|
||||
import static org.junit.jupiter.api.Assertions.assertEquals;
|
||||
|
||||
import org.junit.jupiter.api.Test;
|
||||
|
||||
/**
|
||||
* Unit tests for the MaxSumKSizeSubarray class.
|
||||
*
|
||||
* @author Your Name (https://github.com/Chiefpatwal)
|
||||
*/
|
||||
class MaxSumKSizeSubarrayTest {
|
||||
|
||||
/**
|
||||
* Test for the basic case of finding the maximum sum.
|
||||
*/
|
||||
@Test
|
||||
void testMaxSumKSizeSubarray() {
|
||||
int[] arr = {1, 2, 3, 4, 5};
|
||||
int k = 2;
|
||||
int expectedMaxSum = 9; // 4 + 5
|
||||
assertEquals(expectedMaxSum, MaxSumKSizeSubarray.maxSumKSizeSubarray(arr, k));
|
||||
}
|
||||
|
||||
/**
|
||||
* Test for a different array and subarray size.
|
||||
*/
|
||||
@Test
|
||||
void testMaxSumKSizeSubarrayWithDifferentValues() {
|
||||
int[] arr = {2, 1, 5, 1, 3, 2};
|
||||
int k = 3;
|
||||
int expectedMaxSum = 9; // 5 + 1 + 3
|
||||
assertEquals(expectedMaxSum, MaxSumKSizeSubarray.maxSumKSizeSubarray(arr, k));
|
||||
}
|
||||
|
||||
/**
|
||||
* Test for edge case with insufficient elements.
|
||||
*/
|
||||
@Test
|
||||
void testMaxSumKSizeSubarrayWithInsufficientElements() {
|
||||
int[] arr = {1, 2};
|
||||
int k = 3; // Not enough elements
|
||||
int expectedMaxSum = -1; // Edge case
|
||||
assertEquals(expectedMaxSum, MaxSumKSizeSubarray.maxSumKSizeSubarray(arr, k));
|
||||
}
|
||||
|
||||
/**
|
||||
* Test for large array.
|
||||
*/
|
||||
@Test
|
||||
void testMaxSumKSizeSubarrayWithLargeArray() {
|
||||
int[] arr = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
|
||||
int k = 5;
|
||||
int expectedMaxSum = 40; // 6 + 7 + 8 + 9 + 10
|
||||
assertEquals(expectedMaxSum, MaxSumKSizeSubarray.maxSumKSizeSubarray(arr, k));
|
||||
}
|
||||
|
||||
/**
|
||||
* Test for array with negative numbers.
|
||||
*/
|
||||
@Test
|
||||
void testMaxSumKSizeSubarrayWithNegativeNumbers() {
|
||||
int[] arr = {-1, -2, -3, -4, -5};
|
||||
int k = 2;
|
||||
int expectedMaxSum = -3; // -1 + -2
|
||||
assertEquals(expectedMaxSum, MaxSumKSizeSubarray.maxSumKSizeSubarray(arr, k));
|
||||
}
|
||||
|
||||
/**
|
||||
* Test for the case where k equals the array length.
|
||||
*/
|
||||
@Test
|
||||
void testMaxSumKSizeSubarrayWithKEqualToArrayLength() {
|
||||
int[] arr = {1, 2, 3, 4, 5};
|
||||
int k = 5;
|
||||
int expectedMaxSum = 15; // 1 + 2 + 3 + 4 + 5
|
||||
assertEquals(expectedMaxSum, MaxSumKSizeSubarray.maxSumKSizeSubarray(arr, k));
|
||||
}
|
||||
}
|
Reference in New Issue
Block a user