mirror of
https://github.com/TheAlgorithms/Java.git
synced 2025-07-26 05:59:22 +08:00
refactor: change packages (#5430)
* refactor: change package * refactor: fix name --------- Co-authored-by: alxkm <alx@alx.com>
This commit is contained in:
47
src/main/java/com/thealgorithms/maths/EulersFunction.java
Normal file
47
src/main/java/com/thealgorithms/maths/EulersFunction.java
Normal file
@ -0,0 +1,47 @@
|
||||
package com.thealgorithms.maths;
|
||||
|
||||
/**
|
||||
* Utility class for computing
|
||||
* <a href="https://en.wikipedia.org/wiki/Euler%27s_totient_function">Euler's totient function</a>.
|
||||
*/
|
||||
public final class EulersFunction {
|
||||
private EulersFunction() {
|
||||
}
|
||||
|
||||
/**
|
||||
* Validates that the input is a positive integer.
|
||||
*
|
||||
* @param n the input number to validate
|
||||
* @throws IllegalArgumentException if {@code n} is non-positive
|
||||
*/
|
||||
private static void checkInput(int n) {
|
||||
if (n <= 0) {
|
||||
throw new IllegalArgumentException("n must be positive.");
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Computes the value of Euler's totient function for a given input.
|
||||
* This function has a time complexity of O(sqrt(n)).
|
||||
*
|
||||
* @param n the input number
|
||||
* @return the value of Euler's totient function for the given input
|
||||
* @throws IllegalArgumentException if {@code n} is non-positive
|
||||
*/
|
||||
public static int getEuler(int n) {
|
||||
checkInput(n);
|
||||
int result = n;
|
||||
for (int i = 2; i * i <= n; i++) {
|
||||
if (n % i == 0) {
|
||||
while (n % i == 0) {
|
||||
n /= i;
|
||||
}
|
||||
result -= result / i;
|
||||
}
|
||||
}
|
||||
if (n > 1) {
|
||||
result -= result / n;
|
||||
}
|
||||
return result;
|
||||
}
|
||||
}
|
@ -0,0 +1,66 @@
|
||||
package com.thealgorithms.maths;
|
||||
|
||||
import java.util.Arrays;
|
||||
|
||||
/**
|
||||
* @brief utility class implementing <a href="https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes">Sieve of Eratosthenes</a>
|
||||
*/
|
||||
public final class SieveOfEratosthenes {
|
||||
private SieveOfEratosthenes() {
|
||||
}
|
||||
|
||||
private static void checkInput(int n) {
|
||||
if (n <= 0) {
|
||||
throw new IllegalArgumentException("n must be positive.");
|
||||
}
|
||||
}
|
||||
|
||||
private static Type[] sievePrimesTill(int n) {
|
||||
checkInput(n);
|
||||
Type[] isPrimeArray = new Type[n + 1];
|
||||
Arrays.fill(isPrimeArray, Type.PRIME);
|
||||
isPrimeArray[0] = Type.NOT_PRIME;
|
||||
isPrimeArray[1] = Type.NOT_PRIME;
|
||||
|
||||
double cap = Math.sqrt(n);
|
||||
for (int i = 2; i <= cap; i++) {
|
||||
if (isPrimeArray[i] == Type.PRIME) {
|
||||
for (int j = 2; i * j <= n; j++) {
|
||||
isPrimeArray[i * j] = Type.NOT_PRIME;
|
||||
}
|
||||
}
|
||||
}
|
||||
return isPrimeArray;
|
||||
}
|
||||
|
||||
private static int countPrimes(Type[] isPrimeArray) {
|
||||
return (int) Arrays.stream(isPrimeArray).filter(element -> element == Type.PRIME).count();
|
||||
}
|
||||
|
||||
private static int[] extractPrimes(Type[] isPrimeArray) {
|
||||
int numberOfPrimes = countPrimes(isPrimeArray);
|
||||
int[] primes = new int[numberOfPrimes];
|
||||
int primeIndex = 0;
|
||||
for (int curNumber = 0; curNumber < isPrimeArray.length; ++curNumber) {
|
||||
if (isPrimeArray[curNumber] == Type.PRIME) {
|
||||
primes[primeIndex++] = curNumber;
|
||||
}
|
||||
}
|
||||
return primes;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief finds all of the prime numbers up to the given upper (inclusive) limit
|
||||
* @param n upper (inclusive) limit
|
||||
* @exception IllegalArgumentException n is non-positive
|
||||
* @return the array of all primes up to the given number (inclusive)
|
||||
*/
|
||||
public static int[] findPrimesTill(int n) {
|
||||
return extractPrimes(sievePrimesTill(n));
|
||||
}
|
||||
|
||||
private enum Type {
|
||||
PRIME,
|
||||
NOT_PRIME,
|
||||
}
|
||||
}
|
Reference in New Issue
Block a user