mirror of
https://github.com/TheAlgorithms/Java.git
synced 2025-07-08 18:32:56 +08:00
Add Sliding Window Problem (#4322)
This commit is contained in:
@ -0,0 +1,70 @@
|
||||
package com.thealgorithms.others;
|
||||
|
||||
import java.util.HashSet;
|
||||
|
||||
/*
|
||||
References: https://en.wikipedia.org/wiki/Streaming_algorithm
|
||||
* In this model, the function of interest is computing over a fixed-size window in the stream. As the stream progresses,
|
||||
* items from the end of the window are removed from consideration while new items from the stream take their place.
|
||||
* @author Swarga-codes (https://github.com/Swarga-codes)
|
||||
*/
|
||||
public class MaximumSumOfDistinctSubarraysWithLengthK {
|
||||
/*
|
||||
* Returns the maximum sum of subarray of size K consisting of distinct
|
||||
* elements.
|
||||
*
|
||||
* @param k size of the subarray which should be considered from the given
|
||||
* array.
|
||||
*
|
||||
* @param nums is the array from which we would be finding the required
|
||||
* subarray.
|
||||
*
|
||||
* @return the maximum sum of distinct subarray of size K.
|
||||
*/
|
||||
public static long maximumSubarraySum(int k, int... nums) {
|
||||
if (nums.length < k) return 0;
|
||||
long max = 0; // this will store the max sum which will be our result
|
||||
long s = 0; // this will store the sum of every k elements which can be used to compare with
|
||||
// max
|
||||
HashSet<Integer> set = new HashSet<>(); // this can be used to store unique elements in our subarray
|
||||
// Looping through k elements to get the sum of first k elements
|
||||
for (int i = 0; i < k; i++) {
|
||||
s += nums[i];
|
||||
set.add(nums[i]);
|
||||
}
|
||||
// Checking if the first kth subarray contains unique elements or not if so then
|
||||
// we assign that to max
|
||||
if (set.size() == k) {
|
||||
max = s;
|
||||
}
|
||||
// Looping through the rest of the array to find different subarrays and also
|
||||
// utilising the sliding window algorithm to find the sum
|
||||
// in O(n) time complexity
|
||||
for (int i = 1; i < nums.length - k + 1; i++) {
|
||||
s = s - nums[i - 1];
|
||||
s = s + nums[i + k - 1];
|
||||
int j = i;
|
||||
boolean flag = false; // flag value which says that the subarray contains distinct elements
|
||||
while (j < i + k && set.size() < k) {
|
||||
if (nums[i - 1] == nums[j]) {
|
||||
flag = true;
|
||||
break;
|
||||
} else {
|
||||
j++;
|
||||
}
|
||||
}
|
||||
if (!flag) {
|
||||
set.remove(nums[i - 1]);
|
||||
}
|
||||
set.add(nums[i + k - 1]);
|
||||
// if the subarray contains distinct elements then we compare and update the max
|
||||
// value
|
||||
if (set.size() == k) {
|
||||
if (max < s) {
|
||||
max = s;
|
||||
}
|
||||
}
|
||||
}
|
||||
return max; // the final maximum sum
|
||||
}
|
||||
}
|
Reference in New Issue
Block a user