mirror of
https://github.com/TheAlgorithms/Java.git
synced 2025-07-27 06:23:08 +08:00
Add Johnson's algorithm (#5712)
This commit is contained in:
@ -0,0 +1,136 @@
|
||||
package com.thealgorithms.datastructures.graphs;
|
||||
|
||||
import static org.junit.jupiter.api.Assertions.assertArrayEquals;
|
||||
import static org.junit.jupiter.api.Assertions.assertEquals;
|
||||
import static org.junit.jupiter.api.Assertions.assertThrows;
|
||||
|
||||
import org.junit.jupiter.api.Test;
|
||||
|
||||
/**
|
||||
* Unit tests for {@link JohnsonsAlgorithm} class. This class
|
||||
* contains test cases to verify the correct implementation of
|
||||
* various methods used in Johnson's Algorithm such as shortest path
|
||||
* calculations, graph reweighting, and more.
|
||||
*/
|
||||
class JohnsonsAlgorithmTest {
|
||||
|
||||
// Constant representing infinity
|
||||
private static final double INF = Double.POSITIVE_INFINITY;
|
||||
|
||||
/**
|
||||
* Tests the Johnson's Algorithm with a simple graph without negative edges.
|
||||
* Verifies that the algorithm returns the correct shortest path distances.
|
||||
*/
|
||||
@Test
|
||||
void testSimpleGraph() {
|
||||
// Test case for a simple graph without negative edges
|
||||
double[][] graph = {{0, 4, INF, INF}, {INF, 0, 1, INF}, {INF, INF, 0, 2}, {INF, INF, INF, 0}};
|
||||
|
||||
double[][] result = JohnsonsAlgorithm.johnsonAlgorithm(graph);
|
||||
|
||||
double[][] expected = {{0, 4, 5, 7}, {INF, 0, 1, 3}, {INF, INF, 0, 2}, {INF, INF, INF, 0}};
|
||||
|
||||
assertArrayEquals(expected, result);
|
||||
}
|
||||
|
||||
/**
|
||||
* Tests Johnson's Algorithm on a graph with negative edges but no
|
||||
* negative weight cycles. Verifies the algorithm handles negative
|
||||
* edge weights correctly.
|
||||
*/
|
||||
@Test
|
||||
void testGraphWithNegativeEdges() {
|
||||
// Graph with negative edges but no negative weight cycles
|
||||
double[][] graph = {{0, -1, 4}, {INF, 0, 3}, {INF, INF, 0}};
|
||||
|
||||
double[][] result = JohnsonsAlgorithm.johnsonAlgorithm(graph);
|
||||
|
||||
double[][] expected = {{0, INF, 4}, {INF, 0, 3}, {INF, INF, 0}};
|
||||
|
||||
assertArrayEquals(expected, result);
|
||||
}
|
||||
|
||||
/**
|
||||
* Tests the behavior of Johnson's Algorithm on a graph with a negative
|
||||
* weight cycle. Expects an IllegalArgumentException to be thrown
|
||||
* due to the presence of the cycle.
|
||||
*/
|
||||
@Test
|
||||
void testNegativeWeightCycle() {
|
||||
// Graph with a negative weight cycle
|
||||
double[][] graph = {{0, 1, INF}, {INF, 0, -1}, {-1, INF, 0}};
|
||||
|
||||
// Johnson's algorithm should throw an exception when a negative cycle is detected
|
||||
assertThrows(IllegalArgumentException.class, () -> { JohnsonsAlgorithm.johnsonAlgorithm(graph); });
|
||||
}
|
||||
|
||||
/**
|
||||
* Tests Dijkstra's algorithm as a part of Johnson's algorithm implementation
|
||||
* on a small graph. Verifies that the shortest path is correctly calculated.
|
||||
*/
|
||||
@Test
|
||||
void testDijkstra() {
|
||||
// Testing Dijkstra's algorithm with a small graph
|
||||
double[][] graph = {{0, 1, 2}, {INF, 0, 3}, {INF, INF, 0}};
|
||||
|
||||
double[] modifiedWeights = {0, 0, 0}; // No reweighting in this simple case
|
||||
|
||||
double[] result = JohnsonsAlgorithm.dijkstra(graph, 0, modifiedWeights);
|
||||
double[] expected = {0, 1, 2};
|
||||
|
||||
assertArrayEquals(expected, result);
|
||||
}
|
||||
|
||||
/**
|
||||
* Tests the conversion of an adjacency matrix to an edge list.
|
||||
* Verifies that the conversion process generates the correct edge list.
|
||||
*/
|
||||
@Test
|
||||
void testEdgeListConversion() {
|
||||
// Test the conversion of adjacency matrix to edge list
|
||||
double[][] graph = {{0, 5, INF}, {INF, 0, 2}, {INF, INF, 0}};
|
||||
|
||||
// Running convertToEdgeList
|
||||
double[][] edges = JohnsonsAlgorithm.convertToEdgeList(graph);
|
||||
|
||||
// Expected edge list: (0 -> 1, weight 5), (1 -> 2, weight 2)
|
||||
double[][] expected = {{0, 1, 5}, {1, 2, 2}};
|
||||
|
||||
// Verify the edge list matches the expected values
|
||||
assertArrayEquals(expected, edges);
|
||||
}
|
||||
|
||||
/**
|
||||
* Tests the reweighting of a graph as a part of Johnson's Algorithm.
|
||||
* Verifies that the reweighted graph produces correct results.
|
||||
*/
|
||||
@Test
|
||||
void testReweightGraph() {
|
||||
// Test reweighting of the graph
|
||||
double[][] graph = {{0, 2, 9}, {INF, 0, 1}, {INF, INF, 0}};
|
||||
double[] modifiedWeights = {1, 2, 3}; // Arbitrary weight function
|
||||
|
||||
double[][] reweightedGraph = JohnsonsAlgorithm.reweightGraph(graph, modifiedWeights);
|
||||
|
||||
// Expected reweighted graph:
|
||||
double[][] expected = {{0, 1, 7}, {INF, 0, 0}, {INF, INF, 0}};
|
||||
|
||||
assertArrayEquals(expected, reweightedGraph);
|
||||
}
|
||||
|
||||
/**
|
||||
* Tests the minDistance method used in Dijkstra's algorithm to find
|
||||
* the vertex with the minimum distance that has not yet been visited.
|
||||
*/
|
||||
@Test
|
||||
void testMinDistance() {
|
||||
// Test minDistance method
|
||||
double[] dist = {INF, 3, 1, INF};
|
||||
boolean[] visited = {false, false, false, false};
|
||||
|
||||
int minIndex = JohnsonsAlgorithm.minDistance(dist, visited);
|
||||
|
||||
// The vertex with minimum distance is vertex 2 with a distance of 1
|
||||
assertEquals(2, minIndex);
|
||||
}
|
||||
}
|
Reference in New Issue
Block a user