mirror of
https://github.com/TheAlgorithms/Java.git
synced 2025-12-19 07:00:35 +08:00
Prim's And kruskal's Algorithms
This commit is contained in:
116
data_structures/Graphs/prim.java
Normal file
116
data_structures/Graphs/prim.java
Normal file
@@ -0,0 +1,116 @@
|
||||
// A Java program for Prim's Minimum Spanning Tree (MST) algorithm.
|
||||
//adjacency matrix representation of the graph
|
||||
|
||||
import java.util.*;
|
||||
import java.lang.*;
|
||||
import java.io.*;
|
||||
|
||||
class MST
|
||||
{
|
||||
// Number of vertices in the graph
|
||||
private static final int V=5;
|
||||
|
||||
// A utility function to find the vertex with minimum key
|
||||
// value, from the set of vertices not yet included in MST
|
||||
int minKey(int key[], Boolean mstSet[])
|
||||
{
|
||||
// Initialize min value
|
||||
int min = Integer.MAX_VALUE, min_index=-1;
|
||||
|
||||
for (int v = 0; v < V; v++)
|
||||
if (mstSet[v] == false && key[v] < min)
|
||||
{
|
||||
min = key[v];
|
||||
min_index = v;
|
||||
}
|
||||
|
||||
return min_index;
|
||||
}
|
||||
|
||||
// A utility function to print the constructed MST stored in
|
||||
// parent[]
|
||||
void printMST(int parent[], int n, int graph[][])
|
||||
{
|
||||
System.out.println("Edge Weight");
|
||||
for (int i = 1; i < V; i++)
|
||||
System.out.println(parent[i]+" - "+ i+" "+
|
||||
graph[i][parent[i]]);
|
||||
}
|
||||
|
||||
// Function to construct and print MST for a graph represented
|
||||
// using adjacency matrix representation
|
||||
void primMST(int graph[][])
|
||||
{
|
||||
// Array to store constructed MST
|
||||
int parent[] = new int[V];
|
||||
|
||||
// Key values used to pick minimum weight edge in cut
|
||||
int key[] = new int [V];
|
||||
|
||||
// To represent set of vertices not yet included in MST
|
||||
Boolean mstSet[] = new Boolean[V];
|
||||
|
||||
// Initialize all keys as INFINITE
|
||||
for (int i = 0; i < V; i++)
|
||||
{
|
||||
key[i] = Integer.MAX_VALUE;
|
||||
mstSet[i] = false;
|
||||
}
|
||||
|
||||
// Always include first 1st vertex in MST.
|
||||
key[0] = 0; // Make key 0 so that this vertex is
|
||||
// picked as first vertex
|
||||
parent[0] = -1; // First node is always root of MST
|
||||
|
||||
// The MST will have V vertices
|
||||
for (int count = 0; count < V-1; count++)
|
||||
{
|
||||
// Pick thd minimum key vertex from the set of vertices
|
||||
// not yet included in MST
|
||||
int u = minKey(key, mstSet);
|
||||
|
||||
// Add the picked vertex to the MST Set
|
||||
mstSet[u] = true;
|
||||
|
||||
// Update key value and parent index of the adjacent
|
||||
// vertices of the picked vertex. Consider only those
|
||||
// vertices which are not yet included in MST
|
||||
for (int v = 0; v < V; v++)
|
||||
|
||||
// graph[u][v] is non zero only for adjacent vertices of m
|
||||
// mstSet[v] is false for vertices not yet included in MST
|
||||
// Update the key only if graph[u][v] is smaller than key[v]
|
||||
if (graph[u][v]!=0 && mstSet[v] == false &&
|
||||
graph[u][v] < key[v])
|
||||
{
|
||||
parent[v] = u;
|
||||
key[v] = graph[u][v];
|
||||
}
|
||||
}
|
||||
|
||||
// print the constructed MST
|
||||
printMST(parent, V, graph);
|
||||
}
|
||||
|
||||
public static void main (String[] args)
|
||||
{
|
||||
/* Let us create the following graph
|
||||
2 3
|
||||
(0)--(1)--(2)
|
||||
| / \ |
|
||||
6| 8/ \5 |7
|
||||
| / \ |
|
||||
(3)-------(4)
|
||||
9 */
|
||||
MST t = new MST();
|
||||
int graph[][] = new int[][] {{0, 2, 0, 6, 0},
|
||||
{2, 0, 3, 8, 5},
|
||||
{0, 3, 0, 0, 7},
|
||||
{6, 8, 0, 0, 9},
|
||||
{0, 5, 7, 9, 0},
|
||||
};
|
||||
|
||||
// Print the solution
|
||||
t.primMST(graph);
|
||||
}
|
||||
}
|
||||
Reference in New Issue
Block a user