refactor: improve Sparsity class with input validation and clearer logic (#6351)

Co-authored-by: Deniz Altunkapan <93663085+DenizAltunkapan@users.noreply.github.com>
This commit is contained in:
Oleksandr Klymenko
2025-07-09 21:49:58 +03:00
committed by GitHub
parent c997a32018
commit a6aadd5b64

View File

@@ -1,40 +1,46 @@
package com.thealgorithms.misc;
/*
*A matrix is sparse if many of its coefficients are zero (In general if 2/3rd of matrix elements
*are 0, it is considered as sparse). The interest in sparsity arises because its exploitation can
*lead to enormous computational savings and because many large matrix problems that occur in
*practice are sparse.
/**
* Utility class for calculating the sparsity of a matrix.
* A matrix is considered sparse if a large proportion of its elements are zero.
* Typically, if more than 2/3 of the elements are zero, the matrix is considered sparse.
*
* @author Ojasva Jain
* Sparsity is defined as:
* sparsity = (number of zero elements) / (total number of elements)
*
* This can lead to significant computational optimizations.
*/
public final class Sparsity {
final class Sparsity {
private Sparsity() {
}
/*
* @param mat the input matrix
* @return Sparsity of matrix
*
* where sparsity = number of zeroes/total elements in matrix
/**
* Calculates the sparsity of a given 2D matrix.
*
* @param matrix the input matrix
* @return the sparsity value between 0 and 1
* @throws IllegalArgumentException if the matrix is null, empty, or contains empty rows
*/
static double sparsity(double[][] mat) {
if (mat == null || mat.length == 0) {
public static double sparsity(double[][] matrix) {
if (matrix == null || matrix.length == 0 || matrix[0].length == 0) {
throw new IllegalArgumentException("Matrix cannot be null or empty");
}
int zero = 0;
// Traversing the matrix to count number of zeroes
for (int i = 0; i < mat.length; i++) {
for (int j = 0; j < mat[i].length; j++) {
if (mat[i][j] == 0) {
zero++;
int zeroCount = 0;
int totalElements = 0;
// Count the number of zero elements and total elements
for (double[] row : matrix) {
for (double value : row) {
if (value == 0.0) {
zeroCount++;
}
totalElements++;
}
}
// return sparsity
return ((double) zero / (mat.length * mat[0].length));
// Return sparsity as a double
return (double) zeroCount / totalElements;
}
}