mirror of
https://github.com/TheAlgorithms/Java.git
synced 2025-07-07 09:45:04 +08:00
Add pollard rho algorithm (#3260)
This commit is contained in:
74
src/main/java/com/thealgorithms/maths/PollardRho.java
Normal file
74
src/main/java/com/thealgorithms/maths/PollardRho.java
Normal file
@ -0,0 +1,74 @@
|
||||
package com.thealgorithms.maths;
|
||||
|
||||
/*
|
||||
* Java program for pollard rho algorithm
|
||||
* The algorithm is used to factorize a number n = pq,
|
||||
* where p is a non-trivial factor.
|
||||
* Pollard's rho algorithm is an algorithm for integer factorization
|
||||
* and it takes as its inputs n, the integer to be factored;
|
||||
* and g(x), a polynomial in x computed modulo n.
|
||||
* In the original algorithm, g(x) = ((x ^ 2) − 1) mod n,
|
||||
* but nowadays it is more common to use g(x) = ((x ^ 2) + 1 ) mod n.
|
||||
* The output is either a non-trivial factor of n, or failure.
|
||||
* It performs the following steps:
|
||||
* x ← 2
|
||||
* y ← 2
|
||||
* d ← 1
|
||||
|
||||
* while d = 1:
|
||||
* x ← g(x)
|
||||
* y ← g(g(y))
|
||||
* d ← gcd(|x - y|, n)
|
||||
|
||||
* if d = n:
|
||||
* return failure
|
||||
* else:
|
||||
* return d
|
||||
|
||||
* Here x and y corresponds to xi and xj in the previous section.
|
||||
* Note that this algorithm may fail to find a nontrivial factor even when n is composite.
|
||||
* In that case, the method can be tried again, using a starting value other than 2 or a different g(x)
|
||||
*
|
||||
* Wikipedia: https://en.wikipedia.org/wiki/Pollard%27s_rho_algorithm
|
||||
*
|
||||
* Author: Akshay Dubey (https://github.com/itsAkshayDubey)
|
||||
*
|
||||
* */
|
||||
public class PollardRho {
|
||||
|
||||
/**
|
||||
* This method returns a polynomial in x computed modulo n
|
||||
*
|
||||
* @param base Integer base of the polynomial
|
||||
* @param modulus Integer is value which is to be used to perform modulo operation over the polynomial
|
||||
* @return Integer (((base * base) - 1) % modulus)
|
||||
*/
|
||||
static int g(int base,int modulus) {
|
||||
return ((base * base) - 1) % modulus;
|
||||
}
|
||||
|
||||
/**
|
||||
* This method returns a non-trivial factor of given integer number
|
||||
*
|
||||
* @param number Integer is a integer value whose non-trivial factor is to be found
|
||||
* @return Integer non-trivial factor of number
|
||||
* @throws RuntimeException object if GCD of given number cannot be found
|
||||
*/
|
||||
static int pollardRho(int number) {
|
||||
int x = 2, y = 2, d = 1;
|
||||
while(d == 1) {
|
||||
//tortoise move
|
||||
x = g(x, number);
|
||||
|
||||
//hare move
|
||||
y = g(g(y, number), number);
|
||||
|
||||
//check GCD of |x-y| and number
|
||||
d = GCD.gcd(Math.abs(x - y), number);
|
||||
}
|
||||
if(d == number) {
|
||||
throw new RuntimeException("GCD cannot be found.");
|
||||
}
|
||||
return d;
|
||||
}
|
||||
}
|
Reference in New Issue
Block a user