mirror of
https://github.com/TheAlgorithms/Java.git
synced 2025-07-25 05:22:39 +08:00
Change project structure to a Maven Java project + Refactor (#2816)
This commit is contained in:

committed by
GitHub

parent
8e533d2617
commit
9fb3364ccc
@ -0,0 +1,76 @@
|
||||
package com.thealgorithms.matrixexponentiation;
|
||||
|
||||
import java.util.Scanner;
|
||||
|
||||
/**
|
||||
* @author Anirudh Buvanesh (https://github.com/anirudhb11) For more information
|
||||
* see https://www.geeksforgeeks.org/matrix-exponentiation/
|
||||
*
|
||||
*/
|
||||
public class Fibonacci {
|
||||
|
||||
// Exponentiation matrix for Fibonacci sequence
|
||||
private static final int[][] fibMatrix = {{1, 1}, {1, 0}};
|
||||
private static final int[][] identityMatrix = {{1, 0}, {0, 1}};
|
||||
//First 2 fibonacci numbers
|
||||
private static final int[][] baseFibNumbers = {{1}, {0}};
|
||||
|
||||
/**
|
||||
* Performs multiplication of 2 matrices
|
||||
*
|
||||
* @param matrix1
|
||||
* @param matrix2
|
||||
* @return The product of matrix1 and matrix2
|
||||
*/
|
||||
private static int[][] matrixMultiplication(int[][] matrix1, int[][] matrix2) {
|
||||
//Check if matrices passed can be multiplied
|
||||
int rowsInMatrix1 = matrix1.length;
|
||||
int columnsInMatrix1 = matrix1[0].length;
|
||||
|
||||
int rowsInMatrix2 = matrix2.length;
|
||||
int columnsInMatrix2 = matrix2[0].length;
|
||||
|
||||
assert columnsInMatrix1 == rowsInMatrix2;
|
||||
int[][] product = new int[rowsInMatrix1][columnsInMatrix2];
|
||||
for (int rowIndex = 0; rowIndex < rowsInMatrix1; rowIndex++) {
|
||||
for (int colIndex = 0; colIndex < columnsInMatrix2; colIndex++) {
|
||||
int matrixEntry = 0;
|
||||
for (int intermediateIndex = 0; intermediateIndex < columnsInMatrix1; intermediateIndex++) {
|
||||
matrixEntry += matrix1[rowIndex][intermediateIndex] * matrix2[intermediateIndex][colIndex];
|
||||
}
|
||||
product[rowIndex][colIndex] = matrixEntry;
|
||||
}
|
||||
}
|
||||
return product;
|
||||
}
|
||||
|
||||
/**
|
||||
* Calculates the fibonacci number using matrix exponentiaition technique
|
||||
*
|
||||
* @param n The input n for which we have to determine the fibonacci number
|
||||
* Outputs the nth * fibonacci number
|
||||
* @return a 2 X 1 array as { {F_n+1}, {F_n} }
|
||||
*/
|
||||
public static int[][] fib(int n) {
|
||||
if (n == 0) {
|
||||
return Fibonacci.identityMatrix;
|
||||
} else {
|
||||
int[][] cachedResult = fib(n / 2);
|
||||
int[][] matrixExpResult = matrixMultiplication(cachedResult, cachedResult);
|
||||
if (n % 2 == 0) {
|
||||
return matrixExpResult;
|
||||
} else {
|
||||
return matrixMultiplication(Fibonacci.fibMatrix, matrixExpResult);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
public static void main(String[] args) {
|
||||
// Returns [0, 1, 1, 2, 3, 5 ..] for n = [0, 1, 2, 3, 4, 5.. ]
|
||||
Scanner sc = new Scanner(System.in);
|
||||
int n = sc.nextInt();
|
||||
int[][] result = matrixMultiplication(fib(n), baseFibNumbers);
|
||||
System.out.println("Fib(" + n + ") = " + result[1][0]);
|
||||
sc.close();
|
||||
}
|
||||
}
|
Reference in New Issue
Block a user