Change project structure to a Maven Java project + Refactor (#2816)

This commit is contained in:
Aitor Fidalgo Sánchez
2021-11-12 07:59:36 +01:00
committed by GitHub
parent 8e533d2617
commit 9fb3364ccc
642 changed files with 26570 additions and 25488 deletions

View File

@ -0,0 +1,118 @@
package com.thealgorithms.datastructures.queues;
//This program implements the concept of CircularQueue in Java
//Link to the concept: (https://en.wikipedia.org/wiki/Circular_buffer)
public class CircularQueue {
public static void main(String[] args) {
circularQueue cq = new circularQueue(5);
System.out.println(cq.isEmpty());
System.out.println(cq.isFull());
cq.enQueue(1);
cq.enQueue(2);
cq.enQueue(3);
cq.enQueue(4);
cq.enQueue(5);
System.out.println(cq.deQueue());
System.out.println(cq.deQueue());
System.out.println(cq.deQueue());
System.out.println(cq.deQueue());
System.out.println(cq.deQueue());
System.out.println(cq.isFull());
System.out.println(cq.isEmpty());
cq.enQueue(6);
cq.enQueue(7);
cq.enQueue(8);
System.out.println(cq.peek());
System.out.println(cq.peek());
cq.deleteQueue();
}
}
class circularQueue {
int[] arr;
int topOfQueue;
int beginningOfQueue;
int size;
public circularQueue(int size) {
arr = new int[size];
topOfQueue = -1;
beginningOfQueue = -1;
this.size = size;
}
public boolean isEmpty() {
if (beginningOfQueue == -1) {
return true;
} else {
return false;
}
}
public boolean isFull() {
if (topOfQueue + 1 == beginningOfQueue) {
return true;
} else if (topOfQueue == size - 1 && beginningOfQueue == 0) {
return true;
} else {
return false;
}
}
public void enQueue(int value) {
if (isFull()) {
System.out.println("The Queue is full!");
} else if (isEmpty()) {
beginningOfQueue = 0;
topOfQueue++;
arr[topOfQueue] = value;
System.out.println(value + " has been successfully inserted!");
} else {
if (topOfQueue + 1 == size) {
topOfQueue = 0;
} else {
topOfQueue++;
}
arr[topOfQueue] = value;
System.out.println(value + " has been successfully inserted!");
}
}
public int deQueue() {
if (isEmpty()) {
System.out.println("The Queue is Empty!");
return -1;
} else {
int res = arr[beginningOfQueue];
arr[beginningOfQueue] = Integer.MIN_VALUE;
if (beginningOfQueue == topOfQueue) {
beginningOfQueue = topOfQueue = -1;
} else if (beginningOfQueue + 1 == size) {
beginningOfQueue = 0;
} else {
beginningOfQueue++;
}
return res;
}
}
public int peek() {
if (isEmpty()) {
System.out.println("The Queue is Empty!");
return -1;
} else {
return arr[beginningOfQueue];
}
}
public void deleteQueue() {
arr = null;
System.out.println("The Queue is deleted!");
}
}

View File

@ -0,0 +1,273 @@
package com.thealgorithms.datastructures.queues;
/**
* A [deque](https://en.wikipedia.org/wiki/Double-ended_queue) is short for a
* double ended queue pronounced "deck" and sometimes referred to as a head-tail
* linked list. A deque is a data structure based on a doubly linked list, but
* only supports adding and removal of nodes from the beginning and the end of
* the list.
*
* @author [Ian Cowan](https://github.com/iccowan)
*/
public class Deques<T> {
/**
* Node for the deque
*/
class DequeNode<S> {
/**
* Value of the node
*/
S val;
/**
* Next node in the deque from this node
*/
DequeNode<S> next = null;
/**
* Previous node in the deque from this node
*/
DequeNode<S> prev = null;
/**
* Constructor
*/
DequeNode(S val) {
this.val = val;
}
}
/**
* Head of the deque
*/
DequeNode<T> head = null;
/**
* Tail of the deque
*/
DequeNode<T> tail = null;
/**
* Size of the deque
*/
int size = 0;
/**
* Adds the specified value to the head of the deque
*
* @param val Value to add to the deque
*/
public void addFirst(T val) {
// Create a new node with the given value
DequeNode<T> newNode = new DequeNode<T>(val);
// Add the node
if (head == null) {
// If the deque is empty, add the node as the head and tail
head = newNode;
tail = newNode;
} else {
// If the deque is not empty, insert the node as the new head
newNode.next = head;
head.prev = newNode;
head = newNode;
}
size++;
}
/**
* Adds the specified value to the tail of the deque
*
* @param val Value to add to the deque
*/
public void addLast(T val) {
// Create a new node with the given value
DequeNode<T> newNode = new DequeNode<T>(val);
// Add the node
if (tail == null) {
// If the deque is empty, add the node as the head and tail
head = newNode;
tail = newNode;
} else {
// If the deque is not empty, insert the node as the new tail
newNode.prev = tail;
tail.next = newNode;
tail = newNode;
}
size++;
}
/**
* Removes and returns the first (head) value in the deque
*
* @return the value of the head of the deque
*/
public T pollFirst() {
// If the head is null, return null
if (head == null) {
return null;
}
// First, let's get the value of the old head
T oldHeadVal = head.val;
// Now, let's remove the head
if (head == tail) {
// If there is only one node, remove it
head = null;
tail = null;
} else {
// If there is more than one node, fix the references
head.next.prev = null;
DequeNode<T> oldHead = head;
head = head.next;
// Can be considered unnecessary...
// Unlinking the old head to make sure there are no random
// references possibly affecting garbage collection
oldHead.next = null;
}
size--;
return oldHeadVal;
}
/**
* Removes and returns the last (tail) value in the deque
*
* @return the value of the tail of the deque
*/
public T pollLast() {
// If the tail is null, return null
if (tail == null) {
return null;
}
// Let's get the value of the old tail
T oldTailVal = tail.val;
// Now, remove the tail
if (head == tail) {
// If there is only one node, remove it
head = null;
tail = null;
} else {
// If there is more than one node, fix the references
tail.prev.next = null;
DequeNode<T> oldTail = tail;
tail = tail.prev;
// Similarly to above, can be considered unnecessary
// See `pollFirst()` for explanation
oldTail.prev = null;
}
size--;
return oldTailVal;
}
/**
* Returns the first (head) value of the deque WITHOUT removing
*
* @return the value of the head of the deque
*/
public T peekFirst() {
return head.val;
}
/**
* Returns the last (tail) value of the deque WITHOUT removing
*
* @return the value of the tail of the deque
*/
public T peekLast() {
return tail.val;
}
/**
* Returns the size of the deque
*
* @return the size of the deque
*/
public int size() {
return size;
}
/**
* Returns whether or not the deque is empty
*
* @return whether or not the deque is empty
*/
public boolean isEmpty() {
return head == null;
}
/**
* Returns a stringified deque in a pretty form:
*
* <p>
* Head -> 1 <-> 2 <-> 3 <- Tail
*
* @return the stringified deque
*/
@Override
public String toString() {
String dequeString = "Head -> ";
DequeNode<T> currNode = head;
while (currNode != null) {
dequeString += currNode.val;
if (currNode.next != null) {
dequeString += " <-> ";
}
currNode = currNode.next;
}
dequeString += " <- Tail";
return dequeString;
}
public static void main(String[] args) {
Deques<Integer> myDeque = new Deques<Integer>();
for (int i = 0; i < 42; i++) {
if (i / 42.0 < 0.5) {
myDeque.addFirst(i);
} else {
myDeque.addLast(i);
}
}
System.out.println(myDeque);
System.out.println("Size: " + myDeque.size());
System.out.println();
myDeque.pollFirst();
myDeque.pollFirst();
myDeque.pollLast();
System.out.println(myDeque);
System.out.println("Size: " + myDeque.size());
System.out.println();
int dequeSize = myDeque.size();
for (int i = 0; i < dequeSize; i++) {
int removing = -1;
if (i / 39.0 < 0.5) {
removing = myDeque.pollFirst();
} else {
removing = myDeque.pollLast();
}
System.out.println("Removing: " + removing);
}
System.out.println(myDeque);
System.out.println(myDeque.size());
}
}

View File

@ -0,0 +1,87 @@
package com.thealgorithms.datastructures.queues;
import java.util.ArrayList;
/**
* This class implements a GenericArrayListQueue.
*
* A GenericArrayListQueue data structure functions the same as any
* specific-typed queue. The GenericArrayListQueue holds elements of types
* to-be-specified at runtime. The elements that are added first are the first
* to be removed (FIFO). New elements are added to the back/rear of the queue.
*/
public class GenericArrayListQueue<T> {
/**
* The generic ArrayList for the queue T is the generic element
*/
ArrayList<T> _queue = new ArrayList<>();
/**
* Checks if the queue has elements (not empty).
*
* @return True if the queue has elements. False otherwise.
*/
private boolean hasElements() {
return !_queue.isEmpty();
}
/**
* Checks what's at the front of the queue.
*
* @return If queue is not empty, element at the front of the queue.
* Otherwise, null
*/
public T peek() {
T result = null;
if (this.hasElements()) {
result = _queue.get(0);
}
return result;
}
/**
* Inserts an element of type T to the queue.
*
* @param element of type T to be added
* @return True if the element was added successfully
*/
public boolean add(T element) {
return _queue.add(element);
}
/**
* Retrieve what's at the front of the queue
*
* @return If queue is not empty, element retrieved. Otherwise, null
*/
public T pull() {
T result = null;
if (this.hasElements()) {
result = _queue.remove(0);
}
return result;
}
/**
* Main method
*
* @param args Command line arguments
*/
public static void main(String[] args) {
GenericArrayListQueue<Integer> queue = new GenericArrayListQueue<>();
System.out.println("Running...");
assert queue.peek() == null;
assert queue.pull() == null;
assert queue.add(1);
assert queue.peek() == 1;
assert queue.add(2);
assert queue.peek() == 1;
assert queue.pull() == 1;
assert queue.peek() == 2;
assert queue.pull() == 2;
assert queue.peek() == null;
assert queue.pull() == null;
System.out.println("Finished.");
}
}

View File

@ -0,0 +1,178 @@
package com.thealgorithms.datastructures.queues;
import java.util.NoSuchElementException;
public class LinkedQueue {
class Node {
int data;
Node next;
public Node() {
this(0);
}
public Node(int data) {
this(data, null);
}
public Node(int data, Node next) {
this.data = data;
this.next = next;
}
}
/**
* Front of Queue
*/
private Node front;
/**
* Rear of Queue
*/
private Node rear;
/**
* Size of Queue
*/
private int size;
/**
* Init LinkedQueue
*/
public LinkedQueue() {
front = rear = new Node();
}
/**
* Check if queue is empty
*
* @return true if queue is empty, otherwise false
*/
public boolean isEmpty() {
return size == 0;
}
/**
* Add element to rear of queue
*
* @param data insert value
* @return true if add successfully
*/
public boolean enqueue(int data) {
Node newNode = new Node(data);
rear.next = newNode;
rear = newNode;
/* make rear point at last node */
size++;
return true;
}
/**
* Remove element at the front of queue
*
* @return element at the front of queue
*/
public int dequeue() {
if (isEmpty()) {
throw new NoSuchElementException("queue is empty");
}
Node destroy = front.next;
int retValue = destroy.data;
front.next = front.next.next;
destroy = null;
/* clear let GC do it's work */
size--;
if (isEmpty()) {
front = rear;
}
return retValue;
}
/**
* Peek element at the front of queue without removing
*
* @return element at the front
*/
public int peekFront() {
if (isEmpty()) {
throw new NoSuchElementException("queue is empty");
}
return front.next.data;
}
/**
* Peek element at the rear of queue without removing
*
* @return element at the front
*/
public int peekRear() {
if (isEmpty()) {
throw new NoSuchElementException("queue is empty");
}
return rear.data;
}
/**
* Return size of queue
*
* @return size of queue
*/
public int size() {
return size;
}
/**
* Clear all nodes in queue
*/
public void clear() {
while (!isEmpty()) {
dequeue();
}
}
@Override
public String toString() {
if (isEmpty()) {
return "[]";
}
StringBuilder builder = new StringBuilder();
Node cur = front.next;
builder.append("[");
while (cur != null) {
builder.append(cur.data).append(", ");
cur = cur.next;
}
builder.replace(builder.length() - 2, builder.length(), "]");
return builder.toString();
}
/* Driver Code */
public static void main(String[] args) {
LinkedQueue queue = new LinkedQueue();
assert queue.isEmpty();
queue.enqueue(1);
/* 1 */
queue.enqueue(2);
/* 1 2 */
queue.enqueue(3);
/* 1 2 3 */
System.out.println(queue);
/* [1, 2, 3] */
assert queue.size() == 3;
assert queue.dequeue() == 1;
assert queue.peekFront() == 2;
assert queue.peekRear() == 3;
queue.clear();
assert queue.isEmpty();
System.out.println(queue);
/* [] */
}
}

View File

@ -0,0 +1,129 @@
package com.thealgorithms.datastructures.queues;
/**
* This class implements a PriorityQueue.
*
* <p>
* A priority queue adds elements into positions based on their priority. So the
* most important elements are placed at the front/on the top. In this example I
* give numbers that are bigger, a higher priority. Queues in theory have no
* fixed size but when using an array implementation it does.
*/
class PriorityQueue {
/**
* The max size of the queue
*/
private int maxSize;
/**
* The array for the queue
*/
private int[] queueArray;
/**
* How many items are in the queue
*/
private int nItems;
/**
* Constructor
*
* @param size Size of the queue
*/
public PriorityQueue(int size) {
maxSize = size;
queueArray = new int[size];
nItems = 0;
}
/**
* Inserts an element in it's appropriate place
*
* @param value Value to be inserted
*/
public void insert(int value) {
if (isFull()) {
throw new RuntimeException("Queue is full");
} else {
int j = nItems - 1; // index of last element
while (j >= 0 && queueArray[j] > value) {
queueArray[j + 1] = queueArray[j]; // Shifts every element up to make room for insertion
j--;
}
queueArray[j + 1] = value; // Once the correct position is found the value is inserted
nItems++;
}
}
/**
* Remove the element from the front of the queue
*
* @return The element removed
*/
public int remove() {
return queueArray[--nItems];
}
/**
* Checks what's at the front of the queue
*
* @return element at the front of the queue
*/
public int peek() {
return queueArray[nItems - 1];
}
/**
* Returns true if the queue is empty
*
* @return true if the queue is empty
*/
public boolean isEmpty() {
return (nItems == 0);
}
/**
* Returns true if the queue is full
*
* @return true if the queue is full
*/
public boolean isFull() {
return (nItems == maxSize);
}
/**
* Returns the number of elements in the queue
*
* @return number of elements in the queue
*/
public int getSize() {
return nItems;
}
}
/**
* This class implements the PriorityQueue class above.
*
* @author Unknown
*/
public class PriorityQueues {
/**
* Main method
*
* @param args Command Line Arguments
*/
public static void main(String[] args) {
PriorityQueue myQueue = new PriorityQueue(4);
myQueue.insert(10);
myQueue.insert(2);
myQueue.insert(5);
myQueue.insert(3);
// [2, 3, 5, 10] Here higher numbers have higher priority, so they are on the top
for (int i = 3; i >= 0; i--) {
System.out.print(
myQueue.remove() + " "); // will print the queue in reverse order [10, 5, 3, 2]
}
// As you can see, a Priority Queue can be used as a sorting algotithm
}
}

View File

@ -0,0 +1,182 @@
package com.thealgorithms.datastructures.queues;
/**
* This implements Queues by using the class Queue.
*
* A queue data structure functions the same as a real world queue. The elements
* that are added first are the first to be removed. New elements are added to
* the back/rear of the queue.
*/
class Queue {
/**
* Default initial capacity.
*/
private static final int DEFAULT_CAPACITY = 10;
/**
* Max size of the queue
*/
private int maxSize;
/**
* The array representing the queue
*/
private int[] queueArray;
/**
* Front of the queue
*/
private int front;
/**
* Rear of the queue
*/
private int rear;
/**
* How many items are in the queue
*/
private int nItems;
/**
* init with DEFAULT_CAPACITY
*/
public Queue() {
this(DEFAULT_CAPACITY);
}
/**
* Constructor
*
* @param size Size of the new queue
*/
public Queue(int size) {
maxSize = size;
queueArray = new int[size];
front = 0;
rear = -1;
nItems = 0;
}
/**
* Inserts an element at the rear of the queue
*
* @param x element to be added
* @return True if the element was added successfully
*/
public boolean insert(int x) {
if (isFull()) {
return false;
}
// If the back of the queue is the end of the array wrap around to the front
rear = (rear + 1) % maxSize;
queueArray[rear] = x;
nItems++;
return true;
}
/**
* Remove an element from the front of the queue
*
* @return the new front of the queue
*/
public int remove() {
if (isEmpty()) {
return -1;
}
int temp = queueArray[front];
front = (front + 1) % maxSize;
nItems--;
return temp;
}
/**
* Checks what's at the front of the queue
*
* @return element at the front of the queue
*/
public int peekFront() {
return queueArray[front];
}
/**
* Checks what's at the rear of the queue
*
* @return element at the rear of the queue
*/
public int peekRear() {
return queueArray[rear];
}
/**
* Returns true if the queue is empty
*
* @return true if the queue is empty
*/
public boolean isEmpty() {
return nItems == 0;
}
/**
* Returns true if the queue is full
*
* @return true if the queue is full
*/
public boolean isFull() {
return nItems == maxSize;
}
/**
* Returns the number of elements in the queue
*
* @return number of elements in the queue
*/
public int getSize() {
return nItems;
}
@Override
public String toString() {
StringBuilder sb = new StringBuilder();
sb.append("[");
for (int i = front;; i = ++i % maxSize) {
sb.append(queueArray[i]).append(", ");
if (i == rear) {
break;
}
}
sb.replace(sb.length() - 2, sb.length(), "]");
return sb.toString();
}
}
/**
* This class is the example for the Queue class
*
* @author Unknown
*/
public class Queues {
/**
* Main method
*
* @param args Command line arguments
*/
public static void main(String[] args) {
Queue myQueue = new Queue(4);
myQueue.insert(10);
myQueue.insert(2);
myQueue.insert(5);
myQueue.insert(3);
// [10(front), 2, 5, 3(rear)]
System.out.println(myQueue.isFull()); // Will print true
myQueue.remove(); // Will make 2 the new front, making 10 no longer part of the queue
// [10, 2(front), 5, 3(rear)]
myQueue.insert(7); // Insert 7 at the rear which will get 0 index because of wrap around
// [7(rear), 2(front), 5, 3]
System.out.println(myQueue.peekFront()); // Will print 2
System.out.println(myQueue.peekRear()); // Will print 7
System.out.println(myQueue.toString()); // Will print [2, 5, 3, 7]
}
}

View File

@ -0,0 +1,23 @@
# Queue
- The Queue interface is present in the `java.util` package.
- It is an ordered list of objects that follows the **FIFO** (First-In-First-Out) principle.
## Characteristics of a Queue
- The Queue is used to insert elements at the end of the queue and removes elements from the beginning of the queue.
- It supports all methods of Collection interface including insertion, deletion etc.
- LinkedList, ArrayBlockingQueue and PriorityQueue are the most commonly used implementations.
## Declaration
`Queue<Obj> queue = new PriorityQueue<Obj> ();`
## Important operations
| Operations | Description |
| ----------- | ----------- |
|Enqueue|Adds an item to the queue|
|Dequeue|Removes an item from the queue|
|Front|Gets the front item from the queue|
|Rear|Gets the last item from the queue|