mirror of
https://github.com/TheAlgorithms/Java.git
synced 2025-07-23 04:20:16 +08:00
Change project structure to a Maven Java project + Refactor (#2816)
This commit is contained in:

committed by
GitHub

parent
8e533d2617
commit
9fb3364ccc
611
src/main/java/com/thealgorithms/ciphers/AES.java
Normal file
611
src/main/java/com/thealgorithms/ciphers/AES.java
Normal file
@ -0,0 +1,611 @@
|
||||
package com.thealgorithms.ciphers;
|
||||
|
||||
import java.math.BigInteger;
|
||||
import java.util.Scanner;
|
||||
|
||||
/**
|
||||
* This class is build to demonstrate the application of the AES-algorithm on a
|
||||
* single 128-Bit block of data.
|
||||
*/
|
||||
public class AES {
|
||||
|
||||
/**
|
||||
* Precalculated values for x to the power of 2 in Rijndaels galois field.
|
||||
* Used as 'RCON' during the key expansion.
|
||||
*/
|
||||
private static final int[] RCON = {
|
||||
0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a,
|
||||
0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39,
|
||||
0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a,
|
||||
0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8,
|
||||
0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef,
|
||||
0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc,
|
||||
0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b,
|
||||
0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3,
|
||||
0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94,
|
||||
0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20,
|
||||
0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35,
|
||||
0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f,
|
||||
0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04,
|
||||
0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63,
|
||||
0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd,
|
||||
0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d
|
||||
};
|
||||
|
||||
/**
|
||||
* Rijndael S-box Substitution table used for encryption in the subBytes
|
||||
* step, as well as the key expansion.
|
||||
*/
|
||||
private static final int[] SBOX = {
|
||||
0x63, 0x7C, 0x77, 0x7B, 0xF2, 0x6B, 0x6F, 0xC5, 0x30, 0x01, 0x67, 0x2B, 0xFE, 0xD7, 0xAB, 0x76,
|
||||
0xCA, 0x82, 0xC9, 0x7D, 0xFA, 0x59, 0x47, 0xF0, 0xAD, 0xD4, 0xA2, 0xAF, 0x9C, 0xA4, 0x72, 0xC0,
|
||||
0xB7, 0xFD, 0x93, 0x26, 0x36, 0x3F, 0xF7, 0xCC, 0x34, 0xA5, 0xE5, 0xF1, 0x71, 0xD8, 0x31, 0x15,
|
||||
0x04, 0xC7, 0x23, 0xC3, 0x18, 0x96, 0x05, 0x9A, 0x07, 0x12, 0x80, 0xE2, 0xEB, 0x27, 0xB2, 0x75,
|
||||
0x09, 0x83, 0x2C, 0x1A, 0x1B, 0x6E, 0x5A, 0xA0, 0x52, 0x3B, 0xD6, 0xB3, 0x29, 0xE3, 0x2F, 0x84,
|
||||
0x53, 0xD1, 0x00, 0xED, 0x20, 0xFC, 0xB1, 0x5B, 0x6A, 0xCB, 0xBE, 0x39, 0x4A, 0x4C, 0x58, 0xCF,
|
||||
0xD0, 0xEF, 0xAA, 0xFB, 0x43, 0x4D, 0x33, 0x85, 0x45, 0xF9, 0x02, 0x7F, 0x50, 0x3C, 0x9F, 0xA8,
|
||||
0x51, 0xA3, 0x40, 0x8F, 0x92, 0x9D, 0x38, 0xF5, 0xBC, 0xB6, 0xDA, 0x21, 0x10, 0xFF, 0xF3, 0xD2,
|
||||
0xCD, 0x0C, 0x13, 0xEC, 0x5F, 0x97, 0x44, 0x17, 0xC4, 0xA7, 0x7E, 0x3D, 0x64, 0x5D, 0x19, 0x73,
|
||||
0x60, 0x81, 0x4F, 0xDC, 0x22, 0x2A, 0x90, 0x88, 0x46, 0xEE, 0xB8, 0x14, 0xDE, 0x5E, 0x0B, 0xDB,
|
||||
0xE0, 0x32, 0x3A, 0x0A, 0x49, 0x06, 0x24, 0x5C, 0xC2, 0xD3, 0xAC, 0x62, 0x91, 0x95, 0xE4, 0x79,
|
||||
0xE7, 0xC8, 0x37, 0x6D, 0x8D, 0xD5, 0x4E, 0xA9, 0x6C, 0x56, 0xF4, 0xEA, 0x65, 0x7A, 0xAE, 0x08,
|
||||
0xBA, 0x78, 0x25, 0x2E, 0x1C, 0xA6, 0xB4, 0xC6, 0xE8, 0xDD, 0x74, 0x1F, 0x4B, 0xBD, 0x8B, 0x8A,
|
||||
0x70, 0x3E, 0xB5, 0x66, 0x48, 0x03, 0xF6, 0x0E, 0x61, 0x35, 0x57, 0xB9, 0x86, 0xC1, 0x1D, 0x9E,
|
||||
0xE1, 0xF8, 0x98, 0x11, 0x69, 0xD9, 0x8E, 0x94, 0x9B, 0x1E, 0x87, 0xE9, 0xCE, 0x55, 0x28, 0xDF,
|
||||
0x8C, 0xA1, 0x89, 0x0D, 0xBF, 0xE6, 0x42, 0x68, 0x41, 0x99, 0x2D, 0x0F, 0xB0, 0x54, 0xBB, 0x16
|
||||
};
|
||||
|
||||
/**
|
||||
* Inverse Rijndael S-box Substitution table used for decryption in the
|
||||
* subBytesDec step.
|
||||
*/
|
||||
private static final int[] INVERSE_SBOX = {
|
||||
0x52, 0x09, 0x6A, 0xD5, 0x30, 0x36, 0xA5, 0x38, 0xBF, 0x40, 0xA3, 0x9E, 0x81, 0xF3, 0xD7, 0xFB,
|
||||
0x7C, 0xE3, 0x39, 0x82, 0x9B, 0x2F, 0xFF, 0x87, 0x34, 0x8E, 0x43, 0x44, 0xC4, 0xDE, 0xE9, 0xCB,
|
||||
0x54, 0x7B, 0x94, 0x32, 0xA6, 0xC2, 0x23, 0x3D, 0xEE, 0x4C, 0x95, 0x0B, 0x42, 0xFA, 0xC3, 0x4E,
|
||||
0x08, 0x2E, 0xA1, 0x66, 0x28, 0xD9, 0x24, 0xB2, 0x76, 0x5B, 0xA2, 0x49, 0x6D, 0x8B, 0xD1, 0x25,
|
||||
0x72, 0xF8, 0xF6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xD4, 0xA4, 0x5C, 0xCC, 0x5D, 0x65, 0xB6, 0x92,
|
||||
0x6C, 0x70, 0x48, 0x50, 0xFD, 0xED, 0xB9, 0xDA, 0x5E, 0x15, 0x46, 0x57, 0xA7, 0x8D, 0x9D, 0x84,
|
||||
0x90, 0xD8, 0xAB, 0x00, 0x8C, 0xBC, 0xD3, 0x0A, 0xF7, 0xE4, 0x58, 0x05, 0xB8, 0xB3, 0x45, 0x06,
|
||||
0xD0, 0x2C, 0x1E, 0x8F, 0xCA, 0x3F, 0x0F, 0x02, 0xC1, 0xAF, 0xBD, 0x03, 0x01, 0x13, 0x8A, 0x6B,
|
||||
0x3A, 0x91, 0x11, 0x41, 0x4F, 0x67, 0xDC, 0xEA, 0x97, 0xF2, 0xCF, 0xCE, 0xF0, 0xB4, 0xE6, 0x73,
|
||||
0x96, 0xAC, 0x74, 0x22, 0xE7, 0xAD, 0x35, 0x85, 0xE2, 0xF9, 0x37, 0xE8, 0x1C, 0x75, 0xDF, 0x6E,
|
||||
0x47, 0xF1, 0x1A, 0x71, 0x1D, 0x29, 0xC5, 0x89, 0x6F, 0xB7, 0x62, 0x0E, 0xAA, 0x18, 0xBE, 0x1B,
|
||||
0xFC, 0x56, 0x3E, 0x4B, 0xC6, 0xD2, 0x79, 0x20, 0x9A, 0xDB, 0xC0, 0xFE, 0x78, 0xCD, 0x5A, 0xF4,
|
||||
0x1F, 0xDD, 0xA8, 0x33, 0x88, 0x07, 0xC7, 0x31, 0xB1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xEC, 0x5F,
|
||||
0x60, 0x51, 0x7F, 0xA9, 0x19, 0xB5, 0x4A, 0x0D, 0x2D, 0xE5, 0x7A, 0x9F, 0x93, 0xC9, 0x9C, 0xEF,
|
||||
0xA0, 0xE0, 0x3B, 0x4D, 0xAE, 0x2A, 0xF5, 0xB0, 0xC8, 0xEB, 0xBB, 0x3C, 0x83, 0x53, 0x99, 0x61,
|
||||
0x17, 0x2B, 0x04, 0x7E, 0xBA, 0x77, 0xD6, 0x26, 0xE1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0C, 0x7D
|
||||
};
|
||||
|
||||
/**
|
||||
* Precalculated lookup table for galois field multiplication by 2 used in
|
||||
* the MixColums step during encryption.
|
||||
*/
|
||||
private static final int[] MULT2 = {
|
||||
0x00, 0x02, 0x04, 0x06, 0x08, 0x0a, 0x0c, 0x0e, 0x10, 0x12, 0x14, 0x16, 0x18, 0x1a, 0x1c, 0x1e,
|
||||
0x20, 0x22, 0x24, 0x26, 0x28, 0x2a, 0x2c, 0x2e, 0x30, 0x32, 0x34, 0x36, 0x38, 0x3a, 0x3c, 0x3e,
|
||||
0x40, 0x42, 0x44, 0x46, 0x48, 0x4a, 0x4c, 0x4e, 0x50, 0x52, 0x54, 0x56, 0x58, 0x5a, 0x5c, 0x5e,
|
||||
0x60, 0x62, 0x64, 0x66, 0x68, 0x6a, 0x6c, 0x6e, 0x70, 0x72, 0x74, 0x76, 0x78, 0x7a, 0x7c, 0x7e,
|
||||
0x80, 0x82, 0x84, 0x86, 0x88, 0x8a, 0x8c, 0x8e, 0x90, 0x92, 0x94, 0x96, 0x98, 0x9a, 0x9c, 0x9e,
|
||||
0xa0, 0xa2, 0xa4, 0xa6, 0xa8, 0xaa, 0xac, 0xae, 0xb0, 0xb2, 0xb4, 0xb6, 0xb8, 0xba, 0xbc, 0xbe,
|
||||
0xc0, 0xc2, 0xc4, 0xc6, 0xc8, 0xca, 0xcc, 0xce, 0xd0, 0xd2, 0xd4, 0xd6, 0xd8, 0xda, 0xdc, 0xde,
|
||||
0xe0, 0xe2, 0xe4, 0xe6, 0xe8, 0xea, 0xec, 0xee, 0xf0, 0xf2, 0xf4, 0xf6, 0xf8, 0xfa, 0xfc, 0xfe,
|
||||
0x1b, 0x19, 0x1f, 0x1d, 0x13, 0x11, 0x17, 0x15, 0x0b, 0x09, 0x0f, 0x0d, 0x03, 0x01, 0x07, 0x05,
|
||||
0x3b, 0x39, 0x3f, 0x3d, 0x33, 0x31, 0x37, 0x35, 0x2b, 0x29, 0x2f, 0x2d, 0x23, 0x21, 0x27, 0x25,
|
||||
0x5b, 0x59, 0x5f, 0x5d, 0x53, 0x51, 0x57, 0x55, 0x4b, 0x49, 0x4f, 0x4d, 0x43, 0x41, 0x47, 0x45,
|
||||
0x7b, 0x79, 0x7f, 0x7d, 0x73, 0x71, 0x77, 0x75, 0x6b, 0x69, 0x6f, 0x6d, 0x63, 0x61, 0x67, 0x65,
|
||||
0x9b, 0x99, 0x9f, 0x9d, 0x93, 0x91, 0x97, 0x95, 0x8b, 0x89, 0x8f, 0x8d, 0x83, 0x81, 0x87, 0x85,
|
||||
0xbb, 0xb9, 0xbf, 0xbd, 0xb3, 0xb1, 0xb7, 0xb5, 0xab, 0xa9, 0xaf, 0xad, 0xa3, 0xa1, 0xa7, 0xa5,
|
||||
0xdb, 0xd9, 0xdf, 0xdd, 0xd3, 0xd1, 0xd7, 0xd5, 0xcb, 0xc9, 0xcf, 0xcd, 0xc3, 0xc1, 0xc7, 0xc5,
|
||||
0xfb, 0xf9, 0xff, 0xfd, 0xf3, 0xf1, 0xf7, 0xf5, 0xeb, 0xe9, 0xef, 0xed, 0xe3, 0xe1, 0xe7, 0xe5
|
||||
};
|
||||
|
||||
/**
|
||||
* Precalculated lookup table for galois field multiplication by 3 used in
|
||||
* the MixColums step during encryption.
|
||||
*/
|
||||
private static final int[] MULT3 = {
|
||||
0x00, 0x03, 0x06, 0x05, 0x0c, 0x0f, 0x0a, 0x09, 0x18, 0x1b, 0x1e, 0x1d, 0x14, 0x17, 0x12, 0x11,
|
||||
0x30, 0x33, 0x36, 0x35, 0x3c, 0x3f, 0x3a, 0x39, 0x28, 0x2b, 0x2e, 0x2d, 0x24, 0x27, 0x22, 0x21,
|
||||
0x60, 0x63, 0x66, 0x65, 0x6c, 0x6f, 0x6a, 0x69, 0x78, 0x7b, 0x7e, 0x7d, 0x74, 0x77, 0x72, 0x71,
|
||||
0x50, 0x53, 0x56, 0x55, 0x5c, 0x5f, 0x5a, 0x59, 0x48, 0x4b, 0x4e, 0x4d, 0x44, 0x47, 0x42, 0x41,
|
||||
0xc0, 0xc3, 0xc6, 0xc5, 0xcc, 0xcf, 0xca, 0xc9, 0xd8, 0xdb, 0xde, 0xdd, 0xd4, 0xd7, 0xd2, 0xd1,
|
||||
0xf0, 0xf3, 0xf6, 0xf5, 0xfc, 0xff, 0xfa, 0xf9, 0xe8, 0xeb, 0xee, 0xed, 0xe4, 0xe7, 0xe2, 0xe1,
|
||||
0xa0, 0xa3, 0xa6, 0xa5, 0xac, 0xaf, 0xaa, 0xa9, 0xb8, 0xbb, 0xbe, 0xbd, 0xb4, 0xb7, 0xb2, 0xb1,
|
||||
0x90, 0x93, 0x96, 0x95, 0x9c, 0x9f, 0x9a, 0x99, 0x88, 0x8b, 0x8e, 0x8d, 0x84, 0x87, 0x82, 0x81,
|
||||
0x9b, 0x98, 0x9d, 0x9e, 0x97, 0x94, 0x91, 0x92, 0x83, 0x80, 0x85, 0x86, 0x8f, 0x8c, 0x89, 0x8a,
|
||||
0xab, 0xa8, 0xad, 0xae, 0xa7, 0xa4, 0xa1, 0xa2, 0xb3, 0xb0, 0xb5, 0xb6, 0xbf, 0xbc, 0xb9, 0xba,
|
||||
0xfb, 0xf8, 0xfd, 0xfe, 0xf7, 0xf4, 0xf1, 0xf2, 0xe3, 0xe0, 0xe5, 0xe6, 0xef, 0xec, 0xe9, 0xea,
|
||||
0xcb, 0xc8, 0xcd, 0xce, 0xc7, 0xc4, 0xc1, 0xc2, 0xd3, 0xd0, 0xd5, 0xd6, 0xdf, 0xdc, 0xd9, 0xda,
|
||||
0x5b, 0x58, 0x5d, 0x5e, 0x57, 0x54, 0x51, 0x52, 0x43, 0x40, 0x45, 0x46, 0x4f, 0x4c, 0x49, 0x4a,
|
||||
0x6b, 0x68, 0x6d, 0x6e, 0x67, 0x64, 0x61, 0x62, 0x73, 0x70, 0x75, 0x76, 0x7f, 0x7c, 0x79, 0x7a,
|
||||
0x3b, 0x38, 0x3d, 0x3e, 0x37, 0x34, 0x31, 0x32, 0x23, 0x20, 0x25, 0x26, 0x2f, 0x2c, 0x29, 0x2a,
|
||||
0x0b, 0x08, 0x0d, 0x0e, 0x07, 0x04, 0x01, 0x02, 0x13, 0x10, 0x15, 0x16, 0x1f, 0x1c, 0x19, 0x1a
|
||||
};
|
||||
|
||||
/**
|
||||
* Precalculated lookup table for galois field multiplication by 9 used in
|
||||
* the MixColums step during decryption.
|
||||
*/
|
||||
private static final int[] MULT9 = {
|
||||
0x00, 0x09, 0x12, 0x1b, 0x24, 0x2d, 0x36, 0x3f, 0x48, 0x41, 0x5a, 0x53, 0x6c, 0x65, 0x7e, 0x77,
|
||||
0x90, 0x99, 0x82, 0x8b, 0xb4, 0xbd, 0xa6, 0xaf, 0xd8, 0xd1, 0xca, 0xc3, 0xfc, 0xf5, 0xee, 0xe7,
|
||||
0x3b, 0x32, 0x29, 0x20, 0x1f, 0x16, 0x0d, 0x04, 0x73, 0x7a, 0x61, 0x68, 0x57, 0x5e, 0x45, 0x4c,
|
||||
0xab, 0xa2, 0xb9, 0xb0, 0x8f, 0x86, 0x9d, 0x94, 0xe3, 0xea, 0xf1, 0xf8, 0xc7, 0xce, 0xd5, 0xdc,
|
||||
0x76, 0x7f, 0x64, 0x6d, 0x52, 0x5b, 0x40, 0x49, 0x3e, 0x37, 0x2c, 0x25, 0x1a, 0x13, 0x08, 0x01,
|
||||
0xe6, 0xef, 0xf4, 0xfd, 0xc2, 0xcb, 0xd0, 0xd9, 0xae, 0xa7, 0xbc, 0xb5, 0x8a, 0x83, 0x98, 0x91,
|
||||
0x4d, 0x44, 0x5f, 0x56, 0x69, 0x60, 0x7b, 0x72, 0x05, 0x0c, 0x17, 0x1e, 0x21, 0x28, 0x33, 0x3a,
|
||||
0xdd, 0xd4, 0xcf, 0xc6, 0xf9, 0xf0, 0xeb, 0xe2, 0x95, 0x9c, 0x87, 0x8e, 0xb1, 0xb8, 0xa3, 0xaa,
|
||||
0xec, 0xe5, 0xfe, 0xf7, 0xc8, 0xc1, 0xda, 0xd3, 0xa4, 0xad, 0xb6, 0xbf, 0x80, 0x89, 0x92, 0x9b,
|
||||
0x7c, 0x75, 0x6e, 0x67, 0x58, 0x51, 0x4a, 0x43, 0x34, 0x3d, 0x26, 0x2f, 0x10, 0x19, 0x02, 0x0b,
|
||||
0xd7, 0xde, 0xc5, 0xcc, 0xf3, 0xfa, 0xe1, 0xe8, 0x9f, 0x96, 0x8d, 0x84, 0xbb, 0xb2, 0xa9, 0xa0,
|
||||
0x47, 0x4e, 0x55, 0x5c, 0x63, 0x6a, 0x71, 0x78, 0x0f, 0x06, 0x1d, 0x14, 0x2b, 0x22, 0x39, 0x30,
|
||||
0x9a, 0x93, 0x88, 0x81, 0xbe, 0xb7, 0xac, 0xa5, 0xd2, 0xdb, 0xc0, 0xc9, 0xf6, 0xff, 0xe4, 0xed,
|
||||
0x0a, 0x03, 0x18, 0x11, 0x2e, 0x27, 0x3c, 0x35, 0x42, 0x4b, 0x50, 0x59, 0x66, 0x6f, 0x74, 0x7d,
|
||||
0xa1, 0xa8, 0xb3, 0xba, 0x85, 0x8c, 0x97, 0x9e, 0xe9, 0xe0, 0xfb, 0xf2, 0xcd, 0xc4, 0xdf, 0xd6,
|
||||
0x31, 0x38, 0x23, 0x2a, 0x15, 0x1c, 0x07, 0x0e, 0x79, 0x70, 0x6b, 0x62, 0x5d, 0x54, 0x4f, 0x46
|
||||
};
|
||||
|
||||
/**
|
||||
* Precalculated lookup table for galois field multiplication by 11 used in
|
||||
* the MixColums step during decryption.
|
||||
*/
|
||||
private static final int[] MULT11 = {
|
||||
0x00, 0x0b, 0x16, 0x1d, 0x2c, 0x27, 0x3a, 0x31, 0x58, 0x53, 0x4e, 0x45, 0x74, 0x7f, 0x62, 0x69,
|
||||
0xb0, 0xbb, 0xa6, 0xad, 0x9c, 0x97, 0x8a, 0x81, 0xe8, 0xe3, 0xfe, 0xf5, 0xc4, 0xcf, 0xd2, 0xd9,
|
||||
0x7b, 0x70, 0x6d, 0x66, 0x57, 0x5c, 0x41, 0x4a, 0x23, 0x28, 0x35, 0x3e, 0x0f, 0x04, 0x19, 0x12,
|
||||
0xcb, 0xc0, 0xdd, 0xd6, 0xe7, 0xec, 0xf1, 0xfa, 0x93, 0x98, 0x85, 0x8e, 0xbf, 0xb4, 0xa9, 0xa2,
|
||||
0xf6, 0xfd, 0xe0, 0xeb, 0xda, 0xd1, 0xcc, 0xc7, 0xae, 0xa5, 0xb8, 0xb3, 0x82, 0x89, 0x94, 0x9f,
|
||||
0x46, 0x4d, 0x50, 0x5b, 0x6a, 0x61, 0x7c, 0x77, 0x1e, 0x15, 0x08, 0x03, 0x32, 0x39, 0x24, 0x2f,
|
||||
0x8d, 0x86, 0x9b, 0x90, 0xa1, 0xaa, 0xb7, 0xbc, 0xd5, 0xde, 0xc3, 0xc8, 0xf9, 0xf2, 0xef, 0xe4,
|
||||
0x3d, 0x36, 0x2b, 0x20, 0x11, 0x1a, 0x07, 0x0c, 0x65, 0x6e, 0x73, 0x78, 0x49, 0x42, 0x5f, 0x54,
|
||||
0xf7, 0xfc, 0xe1, 0xea, 0xdb, 0xd0, 0xcd, 0xc6, 0xaf, 0xa4, 0xb9, 0xb2, 0x83, 0x88, 0x95, 0x9e,
|
||||
0x47, 0x4c, 0x51, 0x5a, 0x6b, 0x60, 0x7d, 0x76, 0x1f, 0x14, 0x09, 0x02, 0x33, 0x38, 0x25, 0x2e,
|
||||
0x8c, 0x87, 0x9a, 0x91, 0xa0, 0xab, 0xb6, 0xbd, 0xd4, 0xdf, 0xc2, 0xc9, 0xf8, 0xf3, 0xee, 0xe5,
|
||||
0x3c, 0x37, 0x2a, 0x21, 0x10, 0x1b, 0x06, 0x0d, 0x64, 0x6f, 0x72, 0x79, 0x48, 0x43, 0x5e, 0x55,
|
||||
0x01, 0x0a, 0x17, 0x1c, 0x2d, 0x26, 0x3b, 0x30, 0x59, 0x52, 0x4f, 0x44, 0x75, 0x7e, 0x63, 0x68,
|
||||
0xb1, 0xba, 0xa7, 0xac, 0x9d, 0x96, 0x8b, 0x80, 0xe9, 0xe2, 0xff, 0xf4, 0xc5, 0xce, 0xd3, 0xd8,
|
||||
0x7a, 0x71, 0x6c, 0x67, 0x56, 0x5d, 0x40, 0x4b, 0x22, 0x29, 0x34, 0x3f, 0x0e, 0x05, 0x18, 0x13,
|
||||
0xca, 0xc1, 0xdc, 0xd7, 0xe6, 0xed, 0xf0, 0xfb, 0x92, 0x99, 0x84, 0x8f, 0xbe, 0xb5, 0xa8, 0xa3
|
||||
};
|
||||
|
||||
/**
|
||||
* Precalculated lookup table for galois field multiplication by 13 used in
|
||||
* the MixColums step during decryption.
|
||||
*/
|
||||
private static final int[] MULT13 = {
|
||||
0x00, 0x0d, 0x1a, 0x17, 0x34, 0x39, 0x2e, 0x23, 0x68, 0x65, 0x72, 0x7f, 0x5c, 0x51, 0x46, 0x4b,
|
||||
0xd0, 0xdd, 0xca, 0xc7, 0xe4, 0xe9, 0xfe, 0xf3, 0xb8, 0xb5, 0xa2, 0xaf, 0x8c, 0x81, 0x96, 0x9b,
|
||||
0xbb, 0xb6, 0xa1, 0xac, 0x8f, 0x82, 0x95, 0x98, 0xd3, 0xde, 0xc9, 0xc4, 0xe7, 0xea, 0xfd, 0xf0,
|
||||
0x6b, 0x66, 0x71, 0x7c, 0x5f, 0x52, 0x45, 0x48, 0x03, 0x0e, 0x19, 0x14, 0x37, 0x3a, 0x2d, 0x20,
|
||||
0x6d, 0x60, 0x77, 0x7a, 0x59, 0x54, 0x43, 0x4e, 0x05, 0x08, 0x1f, 0x12, 0x31, 0x3c, 0x2b, 0x26,
|
||||
0xbd, 0xb0, 0xa7, 0xaa, 0x89, 0x84, 0x93, 0x9e, 0xd5, 0xd8, 0xcf, 0xc2, 0xe1, 0xec, 0xfb, 0xf6,
|
||||
0xd6, 0xdb, 0xcc, 0xc1, 0xe2, 0xef, 0xf8, 0xf5, 0xbe, 0xb3, 0xa4, 0xa9, 0x8a, 0x87, 0x90, 0x9d,
|
||||
0x06, 0x0b, 0x1c, 0x11, 0x32, 0x3f, 0x28, 0x25, 0x6e, 0x63, 0x74, 0x79, 0x5a, 0x57, 0x40, 0x4d,
|
||||
0xda, 0xd7, 0xc0, 0xcd, 0xee, 0xe3, 0xf4, 0xf9, 0xb2, 0xbf, 0xa8, 0xa5, 0x86, 0x8b, 0x9c, 0x91,
|
||||
0x0a, 0x07, 0x10, 0x1d, 0x3e, 0x33, 0x24, 0x29, 0x62, 0x6f, 0x78, 0x75, 0x56, 0x5b, 0x4c, 0x41,
|
||||
0x61, 0x6c, 0x7b, 0x76, 0x55, 0x58, 0x4f, 0x42, 0x09, 0x04, 0x13, 0x1e, 0x3d, 0x30, 0x27, 0x2a,
|
||||
0xb1, 0xbc, 0xab, 0xa6, 0x85, 0x88, 0x9f, 0x92, 0xd9, 0xd4, 0xc3, 0xce, 0xed, 0xe0, 0xf7, 0xfa,
|
||||
0xb7, 0xba, 0xad, 0xa0, 0x83, 0x8e, 0x99, 0x94, 0xdf, 0xd2, 0xc5, 0xc8, 0xeb, 0xe6, 0xf1, 0xfc,
|
||||
0x67, 0x6a, 0x7d, 0x70, 0x53, 0x5e, 0x49, 0x44, 0x0f, 0x02, 0x15, 0x18, 0x3b, 0x36, 0x21, 0x2c,
|
||||
0x0c, 0x01, 0x16, 0x1b, 0x38, 0x35, 0x22, 0x2f, 0x64, 0x69, 0x7e, 0x73, 0x50, 0x5d, 0x4a, 0x47,
|
||||
0xdc, 0xd1, 0xc6, 0xcb, 0xe8, 0xe5, 0xf2, 0xff, 0xb4, 0xb9, 0xae, 0xa3, 0x80, 0x8d, 0x9a, 0x97
|
||||
};
|
||||
|
||||
/**
|
||||
* Precalculated lookup table for galois field multiplication by 14 used in
|
||||
* the MixColums step during decryption.
|
||||
*/
|
||||
private static final int[] MULT14 = {
|
||||
0x00, 0x0e, 0x1c, 0x12, 0x38, 0x36, 0x24, 0x2a, 0x70, 0x7e, 0x6c, 0x62, 0x48, 0x46, 0x54, 0x5a,
|
||||
0xe0, 0xee, 0xfc, 0xf2, 0xd8, 0xd6, 0xc4, 0xca, 0x90, 0x9e, 0x8c, 0x82, 0xa8, 0xa6, 0xb4, 0xba,
|
||||
0xdb, 0xd5, 0xc7, 0xc9, 0xe3, 0xed, 0xff, 0xf1, 0xab, 0xa5, 0xb7, 0xb9, 0x93, 0x9d, 0x8f, 0x81,
|
||||
0x3b, 0x35, 0x27, 0x29, 0x03, 0x0d, 0x1f, 0x11, 0x4b, 0x45, 0x57, 0x59, 0x73, 0x7d, 0x6f, 0x61,
|
||||
0xad, 0xa3, 0xb1, 0xbf, 0x95, 0x9b, 0x89, 0x87, 0xdd, 0xd3, 0xc1, 0xcf, 0xe5, 0xeb, 0xf9, 0xf7,
|
||||
0x4d, 0x43, 0x51, 0x5f, 0x75, 0x7b, 0x69, 0x67, 0x3d, 0x33, 0x21, 0x2f, 0x05, 0x0b, 0x19, 0x17,
|
||||
0x76, 0x78, 0x6a, 0x64, 0x4e, 0x40, 0x52, 0x5c, 0x06, 0x08, 0x1a, 0x14, 0x3e, 0x30, 0x22, 0x2c,
|
||||
0x96, 0x98, 0x8a, 0x84, 0xae, 0xa0, 0xb2, 0xbc, 0xe6, 0xe8, 0xfa, 0xf4, 0xde, 0xd0, 0xc2, 0xcc,
|
||||
0x41, 0x4f, 0x5d, 0x53, 0x79, 0x77, 0x65, 0x6b, 0x31, 0x3f, 0x2d, 0x23, 0x09, 0x07, 0x15, 0x1b,
|
||||
0xa1, 0xaf, 0xbd, 0xb3, 0x99, 0x97, 0x85, 0x8b, 0xd1, 0xdf, 0xcd, 0xc3, 0xe9, 0xe7, 0xf5, 0xfb,
|
||||
0x9a, 0x94, 0x86, 0x88, 0xa2, 0xac, 0xbe, 0xb0, 0xea, 0xe4, 0xf6, 0xf8, 0xd2, 0xdc, 0xce, 0xc0,
|
||||
0x7a, 0x74, 0x66, 0x68, 0x42, 0x4c, 0x5e, 0x50, 0x0a, 0x04, 0x16, 0x18, 0x32, 0x3c, 0x2e, 0x20,
|
||||
0xec, 0xe2, 0xf0, 0xfe, 0xd4, 0xda, 0xc8, 0xc6, 0x9c, 0x92, 0x80, 0x8e, 0xa4, 0xaa, 0xb8, 0xb6,
|
||||
0x0c, 0x02, 0x10, 0x1e, 0x34, 0x3a, 0x28, 0x26, 0x7c, 0x72, 0x60, 0x6e, 0x44, 0x4a, 0x58, 0x56,
|
||||
0x37, 0x39, 0x2b, 0x25, 0x0f, 0x01, 0x13, 0x1d, 0x47, 0x49, 0x5b, 0x55, 0x7f, 0x71, 0x63, 0x6d,
|
||||
0xd7, 0xd9, 0xcb, 0xc5, 0xef, 0xe1, 0xf3, 0xfd, 0xa7, 0xa9, 0xbb, 0xb5, 0x9f, 0x91, 0x83, 0x8d
|
||||
};
|
||||
|
||||
/**
|
||||
* Subroutine of the Rijndael key expansion.
|
||||
*/
|
||||
public static BigInteger scheduleCore(BigInteger t, int rconCounter) {
|
||||
StringBuilder rBytes = new StringBuilder(t.toString(16));
|
||||
|
||||
// Add zero padding
|
||||
while (rBytes.length() < 8) {
|
||||
rBytes.insert(0, "0");
|
||||
}
|
||||
|
||||
// rotate the first 16 bits to the back
|
||||
String rotatingBytes = rBytes.substring(0, 2);
|
||||
String fixedBytes = rBytes.substring(2);
|
||||
|
||||
rBytes = new StringBuilder(fixedBytes + rotatingBytes);
|
||||
|
||||
// apply S-Box to all 8-Bit Substrings
|
||||
for (int i = 0; i < 4; i++) {
|
||||
StringBuilder currentByteBits = new StringBuilder(rBytes.substring(i * 2, (i + 1) * 2));
|
||||
|
||||
int currentByte = Integer.parseInt(currentByteBits.toString(), 16);
|
||||
currentByte = SBOX[currentByte];
|
||||
|
||||
// add the current RCON value to the first byte
|
||||
if (i == 0) {
|
||||
currentByte = currentByte ^ RCON[rconCounter];
|
||||
}
|
||||
|
||||
currentByteBits = new StringBuilder(Integer.toHexString(currentByte));
|
||||
|
||||
// Add zero padding
|
||||
while (currentByteBits.length() < 2) {
|
||||
currentByteBits.insert(0, '0');
|
||||
}
|
||||
|
||||
// replace bytes in original string
|
||||
rBytes = new StringBuilder(rBytes.substring(0, i * 2) + currentByteBits + rBytes.substring((i + 1) * 2));
|
||||
}
|
||||
|
||||
// t = new BigInteger(rBytes, 16);
|
||||
// return t;
|
||||
return new BigInteger(rBytes.toString(), 16);
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns an array of 10 + 1 round keys that are calculated by using
|
||||
* Rijndael key schedule
|
||||
*
|
||||
* @return array of 10 + 1 round keys
|
||||
*/
|
||||
public static BigInteger[] keyExpansion(BigInteger initialKey) {
|
||||
BigInteger[] roundKeys = {
|
||||
initialKey,
|
||||
new BigInteger("0"),
|
||||
new BigInteger("0"),
|
||||
new BigInteger("0"),
|
||||
new BigInteger("0"),
|
||||
new BigInteger("0"),
|
||||
new BigInteger("0"),
|
||||
new BigInteger("0"),
|
||||
new BigInteger("0"),
|
||||
new BigInteger("0"),
|
||||
new BigInteger("0"),};
|
||||
|
||||
// initialize rcon iteration
|
||||
int rconCounter = 1;
|
||||
|
||||
for (int i = 1; i < 11; i++) {
|
||||
|
||||
// get the previous 32 bits the key
|
||||
BigInteger t = roundKeys[i - 1].remainder(new BigInteger("100000000", 16));
|
||||
|
||||
// split previous key into 8-bit segments
|
||||
BigInteger[] prevKey = {
|
||||
roundKeys[i - 1].remainder(new BigInteger("100000000", 16)),
|
||||
roundKeys[i - 1]
|
||||
.remainder(new BigInteger("10000000000000000", 16))
|
||||
.divide(new BigInteger("100000000", 16)),
|
||||
roundKeys[i - 1]
|
||||
.remainder(new BigInteger("1000000000000000000000000", 16))
|
||||
.divide(new BigInteger("10000000000000000", 16)),
|
||||
roundKeys[i - 1].divide(new BigInteger("1000000000000000000000000", 16)),};
|
||||
|
||||
// run schedule core
|
||||
t = scheduleCore(t, rconCounter);
|
||||
rconCounter += 1;
|
||||
|
||||
// Calculate partial round key
|
||||
BigInteger t0 = t.xor(prevKey[3]);
|
||||
BigInteger t1 = t0.xor(prevKey[2]);
|
||||
BigInteger t2 = t1.xor(prevKey[1]);
|
||||
BigInteger t3 = t2.xor(prevKey[0]);
|
||||
|
||||
// Join round key segments
|
||||
t2 = t2.multiply(new BigInteger("100000000", 16));
|
||||
t1 = t1.multiply(new BigInteger("10000000000000000", 16));
|
||||
t0 = t0.multiply(new BigInteger("1000000000000000000000000", 16));
|
||||
roundKeys[i] = t0.add(t1).add(t2).add(t3);
|
||||
}
|
||||
return roundKeys;
|
||||
}
|
||||
|
||||
/**
|
||||
* representation of the input 128-bit block as an array of 8-bit integers.
|
||||
*
|
||||
* @param block of 128-bit integers
|
||||
* @return array of 8-bit integers
|
||||
*/
|
||||
public static int[] splitBlockIntoCells(BigInteger block) {
|
||||
|
||||
int[] cells = new int[16];
|
||||
StringBuilder blockBits = new StringBuilder(block.toString(2));
|
||||
|
||||
// Append leading 0 for full "128-bit" string
|
||||
while (blockBits.length() < 128) {
|
||||
blockBits.insert(0, '0');
|
||||
}
|
||||
|
||||
// split 128 to 8 bit cells
|
||||
for (int i = 0; i < cells.length; i++) {
|
||||
String cellBits = blockBits.substring(8 * i, 8 * (i + 1));
|
||||
cells[i] = Integer.parseInt(cellBits, 2);
|
||||
}
|
||||
|
||||
return cells;
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns the 128-bit BigInteger representation of the input of an array of
|
||||
* 8-bit integers.
|
||||
*
|
||||
* @param cells that we need to merge
|
||||
* @return block of merged cells
|
||||
*/
|
||||
public static BigInteger mergeCellsIntoBlock(int[] cells) {
|
||||
|
||||
StringBuilder blockBits = new StringBuilder();
|
||||
for (int i = 0; i < 16; i++) {
|
||||
StringBuilder cellBits = new StringBuilder(Integer.toBinaryString(cells[i]));
|
||||
|
||||
// Append leading 0 for full "8-bit" strings
|
||||
while (cellBits.length() < 8) {
|
||||
cellBits.insert(0, '0');
|
||||
}
|
||||
|
||||
blockBits.append(cellBits);
|
||||
}
|
||||
|
||||
return new BigInteger(blockBits.toString(), 2);
|
||||
}
|
||||
|
||||
/**
|
||||
* @return ciphertext XOR key
|
||||
*/
|
||||
public static BigInteger addRoundKey(BigInteger ciphertext, BigInteger key) {
|
||||
return ciphertext.xor(key);
|
||||
}
|
||||
|
||||
/**
|
||||
* substitutes 8-Bit long substrings of the input using the S-Box and
|
||||
* returns the result.
|
||||
*
|
||||
* @return subtraction Output
|
||||
*/
|
||||
public static BigInteger subBytes(BigInteger ciphertext) {
|
||||
|
||||
int[] cells = splitBlockIntoCells(ciphertext);
|
||||
|
||||
for (int i = 0; i < 16; i++) {
|
||||
cells[i] = SBOX[cells[i]];
|
||||
}
|
||||
|
||||
return mergeCellsIntoBlock(cells);
|
||||
}
|
||||
|
||||
/**
|
||||
* substitutes 8-Bit long substrings of the input using the inverse S-Box
|
||||
* for decryption and returns the result.
|
||||
*
|
||||
* @return subtraction Output
|
||||
*/
|
||||
public static BigInteger subBytesDec(BigInteger ciphertext) {
|
||||
|
||||
int[] cells = splitBlockIntoCells(ciphertext);
|
||||
|
||||
for (int i = 0; i < 16; i++) {
|
||||
cells[i] = INVERSE_SBOX[cells[i]];
|
||||
}
|
||||
|
||||
return mergeCellsIntoBlock(cells);
|
||||
}
|
||||
|
||||
/**
|
||||
* Cell permutation step. Shifts cells within the rows of the input and
|
||||
* returns the result.
|
||||
*/
|
||||
public static BigInteger shiftRows(BigInteger ciphertext) {
|
||||
int[] cells = splitBlockIntoCells(ciphertext);
|
||||
int[] output = new int[16];
|
||||
|
||||
// do nothing in the first row
|
||||
output[0] = cells[0];
|
||||
output[4] = cells[4];
|
||||
output[8] = cells[8];
|
||||
output[12] = cells[12];
|
||||
|
||||
// shift the second row backwards by one cell
|
||||
output[1] = cells[5];
|
||||
output[5] = cells[9];
|
||||
output[9] = cells[13];
|
||||
output[13] = cells[1];
|
||||
|
||||
// shift the third row backwards by two cell
|
||||
output[2] = cells[10];
|
||||
output[6] = cells[14];
|
||||
output[10] = cells[2];
|
||||
output[14] = cells[6];
|
||||
|
||||
// shift the forth row backwards by tree cell
|
||||
output[3] = cells[15];
|
||||
output[7] = cells[3];
|
||||
output[11] = cells[7];
|
||||
output[15] = cells[11];
|
||||
|
||||
return mergeCellsIntoBlock(output);
|
||||
}
|
||||
|
||||
/**
|
||||
* Cell permutation step for decryption . Shifts cells within the rows of
|
||||
* the input and returns the result.
|
||||
*/
|
||||
public static BigInteger shiftRowsDec(BigInteger ciphertext) {
|
||||
int[] cells = splitBlockIntoCells(ciphertext);
|
||||
int[] output = new int[16];
|
||||
|
||||
// do nothing in the first row
|
||||
output[0] = cells[0];
|
||||
output[4] = cells[4];
|
||||
output[8] = cells[8];
|
||||
output[12] = cells[12];
|
||||
|
||||
// shift the second row forwards by one cell
|
||||
output[1] = cells[13];
|
||||
output[5] = cells[1];
|
||||
output[9] = cells[5];
|
||||
output[13] = cells[9];
|
||||
|
||||
// shift the third row forwards by two cell
|
||||
output[2] = cells[10];
|
||||
output[6] = cells[14];
|
||||
output[10] = cells[2];
|
||||
output[14] = cells[6];
|
||||
|
||||
// shift the forth row forwards by tree cell
|
||||
output[3] = cells[7];
|
||||
output[7] = cells[11];
|
||||
output[11] = cells[15];
|
||||
output[15] = cells[3];
|
||||
|
||||
return mergeCellsIntoBlock(output);
|
||||
}
|
||||
|
||||
/**
|
||||
* Applies the Rijndael MixColumns to the input and returns the result.
|
||||
*/
|
||||
public static BigInteger mixColumns(BigInteger ciphertext) {
|
||||
|
||||
int[] cells = splitBlockIntoCells(ciphertext);
|
||||
int[] outputCells = new int[16];
|
||||
|
||||
for (int i = 0; i < 4; i++) {
|
||||
int[] row = {cells[i * 4], cells[i * 4 + 1], cells[i * 4 + 2], cells[i * 4 + 3]};
|
||||
|
||||
outputCells[i * 4] = MULT2[row[0]] ^ MULT3[row[1]] ^ row[2] ^ row[3];
|
||||
outputCells[i * 4 + 1] = row[0] ^ MULT2[row[1]] ^ MULT3[row[2]] ^ row[3];
|
||||
outputCells[i * 4 + 2] = row[0] ^ row[1] ^ MULT2[row[2]] ^ MULT3[row[3]];
|
||||
outputCells[i * 4 + 3] = MULT3[row[0]] ^ row[1] ^ row[2] ^ MULT2[row[3]];
|
||||
}
|
||||
return mergeCellsIntoBlock(outputCells);
|
||||
}
|
||||
|
||||
/**
|
||||
* Applies the inverse Rijndael MixColumns for decryption to the input and
|
||||
* returns the result.
|
||||
*/
|
||||
public static BigInteger mixColumnsDec(BigInteger ciphertext) {
|
||||
|
||||
int[] cells = splitBlockIntoCells(ciphertext);
|
||||
int[] outputCells = new int[16];
|
||||
|
||||
for (int i = 0; i < 4; i++) {
|
||||
int[] row = {cells[i * 4], cells[i * 4 + 1], cells[i * 4 + 2], cells[i * 4 + 3]};
|
||||
|
||||
outputCells[i * 4] = MULT14[row[0]] ^ MULT11[row[1]] ^ MULT13[row[2]] ^ MULT9[row[3]];
|
||||
outputCells[i * 4 + 1] = MULT9[row[0]] ^ MULT14[row[1]] ^ MULT11[row[2]] ^ MULT13[row[3]];
|
||||
outputCells[i * 4 + 2] = MULT13[row[0]] ^ MULT9[row[1]] ^ MULT14[row[2]] ^ MULT11[row[3]];
|
||||
outputCells[i * 4 + 3] = MULT11[row[0]] ^ MULT13[row[1]] ^ MULT9[row[2]] ^ MULT14[row[3]];
|
||||
}
|
||||
return mergeCellsIntoBlock(outputCells);
|
||||
}
|
||||
|
||||
/**
|
||||
* Encrypts the plaintext with the key and returns the result
|
||||
*
|
||||
* @param plainText which we want to encrypt
|
||||
* @param key the key for encrypt
|
||||
* @return EncryptedText
|
||||
*/
|
||||
public static BigInteger encrypt(BigInteger plainText, BigInteger key) {
|
||||
BigInteger[] roundKeys = keyExpansion(key);
|
||||
|
||||
// Initial round
|
||||
plainText = addRoundKey(plainText, roundKeys[0]);
|
||||
|
||||
// Main rounds
|
||||
for (int i = 1; i < 10; i++) {
|
||||
plainText = subBytes(plainText);
|
||||
plainText = shiftRows(plainText);
|
||||
plainText = mixColumns(plainText);
|
||||
plainText = addRoundKey(plainText, roundKeys[i]);
|
||||
}
|
||||
|
||||
// Final round
|
||||
plainText = subBytes(plainText);
|
||||
plainText = shiftRows(plainText);
|
||||
plainText = addRoundKey(plainText, roundKeys[10]);
|
||||
|
||||
return plainText;
|
||||
}
|
||||
|
||||
/**
|
||||
* Decrypts the ciphertext with the key and returns the result
|
||||
*
|
||||
* @param cipherText The Encrypted text which we want to decrypt
|
||||
* @return decryptedText
|
||||
*/
|
||||
public static BigInteger decrypt(BigInteger cipherText, BigInteger key) {
|
||||
|
||||
BigInteger[] roundKeys = keyExpansion(key);
|
||||
|
||||
// Invert final round
|
||||
cipherText = addRoundKey(cipherText, roundKeys[10]);
|
||||
cipherText = shiftRowsDec(cipherText);
|
||||
cipherText = subBytesDec(cipherText);
|
||||
|
||||
// Invert main rounds
|
||||
for (int i = 9; i > 0; i--) {
|
||||
cipherText = addRoundKey(cipherText, roundKeys[i]);
|
||||
cipherText = mixColumnsDec(cipherText);
|
||||
cipherText = shiftRowsDec(cipherText);
|
||||
cipherText = subBytesDec(cipherText);
|
||||
}
|
||||
|
||||
// Invert initial round
|
||||
cipherText = addRoundKey(cipherText, roundKeys[0]);
|
||||
|
||||
return cipherText;
|
||||
}
|
||||
|
||||
public static void main(String[] args) {
|
||||
|
||||
try (Scanner input = new Scanner(System.in)) {
|
||||
System.out.println("Enter (e) letter for encrpyt or (d) letter for decrypt :");
|
||||
char choice = input.nextLine().charAt(0);
|
||||
String in;
|
||||
switch (choice) {
|
||||
case 'E', 'e' -> {
|
||||
System.out.println("Choose a plaintext block (128-Bit Integer in base 16):");
|
||||
in = input.nextLine();
|
||||
BigInteger plaintext = new BigInteger(in, 16);
|
||||
System.out.println("Choose a Key (128-Bit Integer in base 16):");
|
||||
in = input.nextLine();
|
||||
BigInteger encryptionKey = new BigInteger(in, 16);
|
||||
System.out.println(
|
||||
"The encrypted message is: \n" + encrypt(plaintext, encryptionKey).toString(16));
|
||||
}
|
||||
case 'D', 'd' -> {
|
||||
System.out.println("Enter your ciphertext block (128-Bit Integer in base 16):");
|
||||
in = input.nextLine();
|
||||
BigInteger ciphertext = new BigInteger(in, 16);
|
||||
System.out.println("Choose a Key (128-Bit Integer in base 16):");
|
||||
in = input.nextLine();
|
||||
BigInteger decryptionKey = new BigInteger(in, 16);
|
||||
System.out.println(
|
||||
"The deciphered message is:\n" + decrypt(ciphertext, decryptionKey).toString(16));
|
||||
}
|
||||
default ->
|
||||
System.out.println("** End **");
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
97
src/main/java/com/thealgorithms/ciphers/AESEncryption.java
Normal file
97
src/main/java/com/thealgorithms/ciphers/AESEncryption.java
Normal file
@ -0,0 +1,97 @@
|
||||
package com.thealgorithms.ciphers;
|
||||
|
||||
import javax.crypto.*;
|
||||
import java.security.InvalidKeyException;
|
||||
import java.security.NoSuchAlgorithmException;
|
||||
|
||||
/**
|
||||
* This example program shows how AES encryption and decryption can be done in
|
||||
* Java. Please note that secret key and encrypted text is unreadable binary and
|
||||
* hence in the following program we display it in hexadecimal format of the
|
||||
* underlying bytes.
|
||||
*/
|
||||
public class AESEncryption {
|
||||
|
||||
private static final char[] HEX_ARRAY = "0123456789ABCDEF".toCharArray();
|
||||
|
||||
/**
|
||||
* 1. Generate a plain text for encryption 2. Get a secret key (printed in
|
||||
* hexadecimal form). In actual use this must by encrypted and kept safe.
|
||||
* The same key is required for decryption.
|
||||
*/
|
||||
public static void main(String[] args) throws Exception {
|
||||
String plainText = "Hello World";
|
||||
SecretKey secKey = getSecretEncryptionKey();
|
||||
byte[] cipherText = encryptText(plainText, secKey);
|
||||
String decryptedText = decryptText(cipherText, secKey);
|
||||
|
||||
System.out.println("Original Text:" + plainText);
|
||||
System.out.println("AES Key (Hex Form):" + bytesToHex(secKey.getEncoded()));
|
||||
System.out.println("Encrypted Text (Hex Form):" + bytesToHex(cipherText));
|
||||
System.out.println("Descrypted Text:" + decryptedText);
|
||||
}
|
||||
|
||||
/**
|
||||
* gets the AES encryption key. In your actual programs, this should be
|
||||
* safely stored.
|
||||
*
|
||||
* @return secKey (Secret key that we encrypt using it)
|
||||
* @throws NoSuchAlgorithmException (from KeyGenrator)
|
||||
*/
|
||||
public static SecretKey getSecretEncryptionKey() throws NoSuchAlgorithmException {
|
||||
KeyGenerator aesKeyGenerator = KeyGenerator.getInstance("AES");
|
||||
aesKeyGenerator.init(128); // The AES key size in number of bits
|
||||
return aesKeyGenerator.generateKey();
|
||||
}
|
||||
|
||||
/**
|
||||
* Encrypts plainText in AES using the secret key
|
||||
*
|
||||
* @return byteCipherText (The encrypted text)
|
||||
* @throws NoSuchPaddingException (from Cipher)
|
||||
* @throws NoSuchAlgorithmException (from Cipher)
|
||||
* @throws InvalidKeyException (from Cipher)
|
||||
* @throws BadPaddingException (from Cipher)
|
||||
* @throws IllegalBlockSizeException (from Cipher)
|
||||
*/
|
||||
public static byte[] encryptText(String plainText, SecretKey secKey)
|
||||
throws NoSuchAlgorithmException, NoSuchPaddingException, InvalidKeyException,
|
||||
IllegalBlockSizeException, BadPaddingException {
|
||||
// AES defaults to AES/ECB/PKCS5Padding in Java 7
|
||||
Cipher aesCipher = Cipher.getInstance("AES");
|
||||
aesCipher.init(Cipher.ENCRYPT_MODE, secKey);
|
||||
return aesCipher.doFinal(plainText.getBytes());
|
||||
}
|
||||
|
||||
/**
|
||||
* Decrypts encrypted byte array using the key used for encryption.
|
||||
*
|
||||
* @return plainText
|
||||
*/
|
||||
public static String decryptText(byte[] byteCipherText, SecretKey secKey)
|
||||
throws NoSuchAlgorithmException, NoSuchPaddingException, InvalidKeyException,
|
||||
IllegalBlockSizeException, BadPaddingException {
|
||||
// AES defaults to AES/ECB/PKCS5Padding in Java 7
|
||||
Cipher aesCipher = Cipher.getInstance("AES");
|
||||
aesCipher.init(Cipher.DECRYPT_MODE, secKey);
|
||||
byte[] bytePlainText = aesCipher.doFinal(byteCipherText);
|
||||
return new String(bytePlainText);
|
||||
}
|
||||
|
||||
/**
|
||||
* Convert a binary byte array into readable hex form Old library is
|
||||
* deprecated on OpenJdk 11 and this is faster regarding other solution is
|
||||
* using StringBuilder
|
||||
*
|
||||
* @return hexHash
|
||||
*/
|
||||
public static String bytesToHex(byte[] bytes) {
|
||||
char[] hexChars = new char[bytes.length * 2];
|
||||
for (int j = 0; j < bytes.length; j++) {
|
||||
int v = bytes[j] & 0xFF;
|
||||
hexChars[j * 2] = HEX_ARRAY[v >>> 4];
|
||||
hexChars[j * 2 + 1] = HEX_ARRAY[v & 0x0F];
|
||||
}
|
||||
return new String(hexChars);
|
||||
}
|
||||
}
|
72
src/main/java/com/thealgorithms/ciphers/AffineCipher.java
Normal file
72
src/main/java/com/thealgorithms/ciphers/AffineCipher.java
Normal file
@ -0,0 +1,72 @@
|
||||
package com.thealgorithms.ciphers;
|
||||
|
||||
class AffineCipher {
|
||||
|
||||
// Key values of a and b
|
||||
static int a = 17;
|
||||
static int b = 20;
|
||||
|
||||
static String encryptMessage(char[] msg) {
|
||||
/// Cipher Text initially empty
|
||||
String cipher = "";
|
||||
for (int i = 0; i < msg.length; i++) {
|
||||
// Avoid space to be encrypted
|
||||
/* applying encryption formula ( a x + b ) mod m
|
||||
{here x is msg[i] and m is 26} and added 'A' to
|
||||
bring it in range of ascii alphabet[ 65-90 | A-Z ] */
|
||||
if (msg[i] != ' ') {
|
||||
cipher = cipher
|
||||
+ (char) ((((a * (msg[i] - 'A')) + b) % 26) + 'A');
|
||||
} else // else simply append space character
|
||||
{
|
||||
cipher += msg[i];
|
||||
}
|
||||
}
|
||||
return cipher;
|
||||
}
|
||||
|
||||
static String decryptCipher(String cipher) {
|
||||
String msg = "";
|
||||
int a_inv = 0;
|
||||
int flag = 0;
|
||||
|
||||
//Find a^-1 (the multiplicative inverse of a
|
||||
//in the group of integers modulo m.)
|
||||
for (int i = 0; i < 26; i++) {
|
||||
flag = (a * i) % 26;
|
||||
|
||||
// Check if (a*i)%26 == 1,
|
||||
// then i will be the multiplicative inverse of a
|
||||
if (flag == 1) {
|
||||
a_inv = i;
|
||||
}
|
||||
}
|
||||
for (int i = 0; i < cipher.length(); i++) {
|
||||
/*Applying decryption formula a^-1 ( x - b ) mod m
|
||||
{here x is cipher[i] and m is 26} and added 'A'
|
||||
to bring it in range of ASCII alphabet[ 65-90 | A-Z ] */
|
||||
if (cipher.charAt(i) != ' ') {
|
||||
msg = msg + (char) (((a_inv
|
||||
* ((cipher.charAt(i) + 'A' - b)) % 26)) + 'A');
|
||||
} else //else simply append space character
|
||||
{
|
||||
msg += cipher.charAt(i);
|
||||
}
|
||||
}
|
||||
|
||||
return msg;
|
||||
}
|
||||
|
||||
// Driver code
|
||||
public static void main(String[] args) {
|
||||
String msg = "AFFINE CIPHER";
|
||||
|
||||
// Calling encryption function
|
||||
String cipherText = encryptMessage(msg.toCharArray());
|
||||
System.out.println("Encrypted Message is : " + cipherText);
|
||||
|
||||
// Calling Decryption function
|
||||
System.out.println("Decrypted Message is: " + decryptCipher(cipherText));
|
||||
|
||||
}
|
||||
}
|
118
src/main/java/com/thealgorithms/ciphers/Caesar.java
Normal file
118
src/main/java/com/thealgorithms/ciphers/Caesar.java
Normal file
@ -0,0 +1,118 @@
|
||||
package com.thealgorithms.ciphers;
|
||||
|
||||
import java.util.Scanner;
|
||||
|
||||
/**
|
||||
* A Java implementation of Caesar Cipher. /It is a type of substitution cipher
|
||||
* in which each letter in the plaintext is replaced by a letter some fixed
|
||||
* number of positions down the alphabet. /
|
||||
*
|
||||
* @author FAHRI YARDIMCI
|
||||
* @author khalil2535
|
||||
*/
|
||||
public class Caesar {
|
||||
|
||||
/**
|
||||
* Encrypt text by shifting every Latin char by add number shift for ASCII
|
||||
* Example : A + 1 -> B
|
||||
*
|
||||
* @return Encrypted message
|
||||
*/
|
||||
public static String encode(String message, int shift) {
|
||||
StringBuilder encoded = new StringBuilder();
|
||||
|
||||
shift %= 26;
|
||||
|
||||
final int length = message.length();
|
||||
for (int i = 0; i < length; i++) {
|
||||
|
||||
// int current = message.charAt(i); //using char to shift characters because ascii
|
||||
// is in-order latin alphabet
|
||||
char current = message.charAt(i); // Java law : char + int = char
|
||||
|
||||
if (IsCapitalLatinLetter(current)) {
|
||||
|
||||
current += shift;
|
||||
encoded.append((char) (current > 'Z' ? current - 26 : current)); // 26 = number of latin letters
|
||||
|
||||
} else if (IsSmallLatinLetter(current)) {
|
||||
|
||||
current += shift;
|
||||
encoded.append((char) (current > 'z' ? current - 26 : current)); // 26 = number of latin letters
|
||||
|
||||
} else {
|
||||
encoded.append(current);
|
||||
}
|
||||
}
|
||||
return encoded.toString();
|
||||
}
|
||||
|
||||
/**
|
||||
* Decrypt message by shifting back every Latin char to previous the ASCII
|
||||
* Example : B - 1 -> A
|
||||
*
|
||||
* @return message
|
||||
*/
|
||||
public static String decode(String encryptedMessage, int shift) {
|
||||
StringBuilder decoded = new StringBuilder();
|
||||
|
||||
shift %= 26;
|
||||
|
||||
final int length = encryptedMessage.length();
|
||||
for (int i = 0; i < length; i++) {
|
||||
char current = encryptedMessage.charAt(i);
|
||||
if (IsCapitalLatinLetter(current)) {
|
||||
|
||||
current -= shift;
|
||||
decoded.append((char) (current < 'A' ? current + 26 : current)); // 26 = number of latin letters
|
||||
|
||||
} else if (IsSmallLatinLetter(current)) {
|
||||
|
||||
current -= shift;
|
||||
decoded.append((char) (current < 'a' ? current + 26 : current)); // 26 = number of latin letters
|
||||
|
||||
} else {
|
||||
decoded.append(current);
|
||||
}
|
||||
}
|
||||
return decoded.toString();
|
||||
}
|
||||
|
||||
/**
|
||||
* @return true if character is capital Latin letter or false for others
|
||||
*/
|
||||
private static boolean IsCapitalLatinLetter(char c) {
|
||||
return c >= 'A' && c <= 'Z';
|
||||
}
|
||||
|
||||
/**
|
||||
* @return true if character is small Latin letter or false for others
|
||||
*/
|
||||
private static boolean IsSmallLatinLetter(char c) {
|
||||
return c >= 'a' && c <= 'z';
|
||||
}
|
||||
|
||||
public static void main(String[] args) {
|
||||
Scanner input = new Scanner(System.in);
|
||||
System.out.println("Please enter the message (Latin Alphabet)");
|
||||
String message = input.nextLine();
|
||||
System.out.println(message);
|
||||
System.out.println("Please enter the shift number");
|
||||
int shift = input.nextInt() % 26;
|
||||
System.out.println("(E)ncode or (D)ecode ?");
|
||||
char choice = input.next().charAt(0);
|
||||
switch (choice) {
|
||||
case 'E':
|
||||
case 'e':
|
||||
System.out.println(
|
||||
"ENCODED MESSAGE IS \n" + encode(message, shift)); // send our function to handle
|
||||
break;
|
||||
case 'D':
|
||||
case 'd':
|
||||
System.out.println("DECODED MESSAGE IS \n" + decode(message, shift));
|
||||
default:
|
||||
System.out.println("default case");
|
||||
}
|
||||
input.close();
|
||||
}
|
||||
}
|
@ -0,0 +1,208 @@
|
||||
package com.thealgorithms.ciphers;
|
||||
|
||||
import java.util.Objects;
|
||||
|
||||
/**
|
||||
* Columnar Transposition Cipher Encryption and Decryption.
|
||||
*
|
||||
* @author <a href="https://github.com/freitzzz">freitzzz</a>
|
||||
*/
|
||||
public class ColumnarTranspositionCipher {
|
||||
|
||||
private static String keyword;
|
||||
private static Object[][] table;
|
||||
private static String abecedarium;
|
||||
public static final String ABECEDARIUM
|
||||
= "abcdefghijklmnopqrstuvwxyzABCDEFG" + "HIJKLMNOPQRSTUVWXYZ0123456789,.;:-@";
|
||||
private static final String ENCRYPTION_FIELD = "≈";
|
||||
private static final char ENCRYPTION_FIELD_CHAR = '≈';
|
||||
|
||||
/**
|
||||
* Encrypts a certain String with the Columnar Transposition Cipher Rule
|
||||
*
|
||||
* @param word Word being encrypted
|
||||
* @param keyword String with keyword being used
|
||||
* @return a String with the word encrypted by the Columnar Transposition
|
||||
* Cipher Rule
|
||||
*/
|
||||
public static String encrpyter(String word, String keyword) {
|
||||
ColumnarTranspositionCipher.keyword = keyword;
|
||||
abecedariumBuilder(500);
|
||||
table = tableBuilder(word);
|
||||
Object[][] sortedTable = sortTable(table);
|
||||
StringBuilder wordEncrypted = new StringBuilder();
|
||||
for (int i = 0; i < sortedTable[i].length; i++) {
|
||||
for (int j = 1; j < sortedTable.length; j++) {
|
||||
wordEncrypted.append(sortedTable[j][i]);
|
||||
}
|
||||
}
|
||||
return wordEncrypted.toString();
|
||||
}
|
||||
|
||||
/**
|
||||
* Encrypts a certain String with the Columnar Transposition Cipher Rule
|
||||
*
|
||||
* @param word Word being encrypted
|
||||
* @param keyword String with keyword being used
|
||||
* @param abecedarium String with the abecedarium being used. null for
|
||||
* default one
|
||||
* @return a String with the word encrypted by the Columnar Transposition
|
||||
* Cipher Rule
|
||||
*/
|
||||
public static String encrpyter(String word, String keyword, String abecedarium) {
|
||||
ColumnarTranspositionCipher.keyword = keyword;
|
||||
ColumnarTranspositionCipher.abecedarium = Objects.requireNonNullElse(abecedarium, ABECEDARIUM);
|
||||
table = tableBuilder(word);
|
||||
Object[][] sortedTable = sortTable(table);
|
||||
StringBuilder wordEncrypted = new StringBuilder();
|
||||
for (int i = 0; i < sortedTable[0].length; i++) {
|
||||
for (int j = 1; j < sortedTable.length; j++) {
|
||||
wordEncrypted.append(sortedTable[j][i]);
|
||||
}
|
||||
}
|
||||
return wordEncrypted.toString();
|
||||
}
|
||||
|
||||
/**
|
||||
* Decrypts a certain encrypted String with the Columnar Transposition
|
||||
* Cipher Rule
|
||||
*
|
||||
* @return a String decrypted with the word encrypted by the Columnar
|
||||
* Transposition Cipher Rule
|
||||
*/
|
||||
public static String decrypter() {
|
||||
StringBuilder wordDecrypted = new StringBuilder();
|
||||
for (int i = 1; i < table.length; i++) {
|
||||
for (Object item : table[i]) {
|
||||
wordDecrypted.append(item);
|
||||
}
|
||||
}
|
||||
return wordDecrypted.toString().replaceAll(ENCRYPTION_FIELD, "");
|
||||
}
|
||||
|
||||
/**
|
||||
* Builds a table with the word to be encrypted in rows by the Columnar
|
||||
* Transposition Cipher Rule
|
||||
*
|
||||
* @return An Object[][] with the word to be encrypted filled in rows and
|
||||
* columns
|
||||
*/
|
||||
private static Object[][] tableBuilder(String word) {
|
||||
Object[][] table = new Object[numberOfRows(word) + 1][keyword.length()];
|
||||
char[] wordInChards = word.toCharArray();
|
||||
// Fils in the respective numbers
|
||||
table[0] = findElements();
|
||||
int charElement = 0;
|
||||
for (int i = 1; i < table.length; i++) {
|
||||
for (int j = 0; j < table[i].length; j++) {
|
||||
if (charElement < wordInChards.length) {
|
||||
table[i][j] = wordInChards[charElement];
|
||||
charElement++;
|
||||
} else {
|
||||
table[i][j] = ENCRYPTION_FIELD_CHAR;
|
||||
}
|
||||
}
|
||||
}
|
||||
return table;
|
||||
}
|
||||
|
||||
/**
|
||||
* Determines the number of rows the table should have regarding the
|
||||
* Columnar Transposition Cipher Rule
|
||||
*
|
||||
* @return an int with the number of rows that the table should have in
|
||||
* order to respect the Columnar Transposition Cipher Rule.
|
||||
*/
|
||||
private static int numberOfRows(String word) {
|
||||
if (word.length() / keyword.length() > word.length() / keyword.length()) {
|
||||
return (word.length() / keyword.length()) + 1;
|
||||
} else {
|
||||
return word.length() / keyword.length();
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @return charValues
|
||||
*/
|
||||
private static Object[] findElements() {
|
||||
Object[] charValues = new Object[keyword.length()];
|
||||
for (int i = 0; i < charValues.length; i++) {
|
||||
int charValueIndex = abecedarium.indexOf(keyword.charAt(i));
|
||||
charValues[i] = charValueIndex > -1 ? charValueIndex : null;
|
||||
}
|
||||
return charValues;
|
||||
}
|
||||
|
||||
/**
|
||||
* @return tableSorted
|
||||
*/
|
||||
private static Object[][] sortTable(Object[][] table) {
|
||||
Object[][] tableSorted = new Object[table.length][table[0].length];
|
||||
for (int i = 0; i < tableSorted.length; i++) {
|
||||
System.arraycopy(table[i], 0, tableSorted[i], 0, tableSorted[i].length);
|
||||
}
|
||||
for (int i = 0; i < tableSorted[0].length; i++) {
|
||||
for (int j = i + 1; j < tableSorted[0].length; j++) {
|
||||
if ((int) tableSorted[0][i] > (int) table[0][j]) {
|
||||
Object[] column = getColumn(tableSorted, tableSorted.length, i);
|
||||
switchColumns(tableSorted, j, i, column);
|
||||
}
|
||||
}
|
||||
}
|
||||
return tableSorted;
|
||||
}
|
||||
|
||||
/**
|
||||
* @return columnArray
|
||||
*/
|
||||
private static Object[] getColumn(Object[][] table, int rows, int column) {
|
||||
Object[] columnArray = new Object[rows];
|
||||
for (int i = 0; i < rows; i++) {
|
||||
columnArray[i] = table[i][column];
|
||||
}
|
||||
return columnArray;
|
||||
}
|
||||
|
||||
private static void switchColumns(
|
||||
Object[][] table, int firstColumnIndex, int secondColumnIndex, Object[] columnToSwitch) {
|
||||
for (int i = 0; i < table.length; i++) {
|
||||
table[i][secondColumnIndex] = table[i][firstColumnIndex];
|
||||
table[i][firstColumnIndex] = columnToSwitch[i];
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Creates an abecedarium with a specified ascii inded
|
||||
*
|
||||
* @param value Number of characters being used based on the ASCII Table
|
||||
*/
|
||||
private static void abecedariumBuilder(int value) {
|
||||
StringBuilder t = new StringBuilder();
|
||||
for (int i = 0; i < value; i++) {
|
||||
t.append((char) i);
|
||||
}
|
||||
abecedarium = t.toString();
|
||||
}
|
||||
|
||||
private static void showTable() {
|
||||
for (Object[] table1 : table) {
|
||||
for (Object item : table1) {
|
||||
System.out.print(item + " ");
|
||||
}
|
||||
System.out.println();
|
||||
}
|
||||
}
|
||||
|
||||
public static void main(String[] args) {
|
||||
String keywordForExample = "asd215";
|
||||
String wordBeingEncrypted = "This is a test of the Columnar Transposition Cipher";
|
||||
System.out.println("### Example of Columnar Transposition Cipher ###\n");
|
||||
System.out.println("Word being encryped ->>> " + wordBeingEncrypted);
|
||||
System.out.println(
|
||||
"Word encrypted ->>> "
|
||||
+ ColumnarTranspositionCipher.encrpyter(wordBeingEncrypted, keywordForExample));
|
||||
System.out.println("Word decryped ->>> " + ColumnarTranspositionCipher.decrypter());
|
||||
System.out.println("\n### Encrypted Table ###");
|
||||
showTable();
|
||||
}
|
||||
}
|
170
src/main/java/com/thealgorithms/ciphers/HillCipher.java
Normal file
170
src/main/java/com/thealgorithms/ciphers/HillCipher.java
Normal file
@ -0,0 +1,170 @@
|
||||
package com.thealgorithms.ciphers;
|
||||
|
||||
import java.util.Scanner;
|
||||
|
||||
/*
|
||||
* Java Implementation of Hill Cipher
|
||||
* Hill cipher is a polyalphabetic substitution cipher. Each letter is represented by a number belonging to the set Z26 where A=0 , B=1, ..... Z=25.
|
||||
* To encrypt a message, each block of n letters (since matrix size is n x n) is multiplied by an invertible n × n matrix, against modulus 26.
|
||||
* To decrypt the message, each block is multiplied by the inverse of the matrix used for encryption.
|
||||
* The cipher key and plaintext/ciphertext are user inputs.
|
||||
* @author Ojasva Jain
|
||||
*/
|
||||
public class HillCipher {
|
||||
|
||||
static Scanner in = new Scanner(System.in);
|
||||
|
||||
/* Following function encrypts the message
|
||||
*/
|
||||
static void encrypt(String message) {
|
||||
message = message.toUpperCase();
|
||||
// Get key matrix
|
||||
System.out.println("Enter key matrix size");
|
||||
int n = in.nextInt();
|
||||
System.out.println("Enter Key/encryptionKey matrix ");
|
||||
int keyMatrix[][] = new int[n][n];
|
||||
for (int i = 0; i < n; i++) {
|
||||
for (int j = 0; j < n; j++) {
|
||||
keyMatrix[i][j] = in.nextInt();
|
||||
}
|
||||
}
|
||||
//check if det = 0
|
||||
if (determinant(keyMatrix, n) % 26 == 0) {
|
||||
System.out.println("Invalid key, as determinant = 0. Program Terminated");
|
||||
return;
|
||||
}
|
||||
|
||||
int[][] messageVector = new int[n][1];
|
||||
String CipherText = "";
|
||||
int cipherMatrix[][] = new int[n][1];
|
||||
int j = 0;
|
||||
while (j < message.length()) {
|
||||
for (int i = 0; i < n; i++) {
|
||||
if (j >= message.length()) {
|
||||
messageVector[i][0] = 23;
|
||||
} else {
|
||||
messageVector[i][0] = (message.charAt(j)) % 65;
|
||||
}
|
||||
System.out.println(messageVector[i][0]);
|
||||
j++;
|
||||
}
|
||||
int x, i;
|
||||
for (i = 0; i < n; i++) {
|
||||
cipherMatrix[i][0] = 0;
|
||||
|
||||
for (x = 0; x < n; x++) {
|
||||
cipherMatrix[i][0] += keyMatrix[i][x] * messageVector[x][0];
|
||||
}
|
||||
System.out.println(cipherMatrix[i][0]);
|
||||
cipherMatrix[i][0] = cipherMatrix[i][0] % 26;
|
||||
}
|
||||
for (i = 0; i < n; i++) {
|
||||
CipherText += (char) (cipherMatrix[i][0] + 65);
|
||||
}
|
||||
}
|
||||
System.out.println("Ciphertext: " + CipherText);
|
||||
}
|
||||
|
||||
//Following function decrypts a message
|
||||
static void decrypt(String message) {
|
||||
message = message.toUpperCase();
|
||||
// Get key matrix
|
||||
System.out.println("Enter key matrix size");
|
||||
int n = in.nextInt();
|
||||
System.out.println("Enter inverseKey/decryptionKey matrix ");
|
||||
int keyMatrix[][] = new int[n][n];
|
||||
for (int i = 0; i < n; i++) {
|
||||
for (int j = 0; j < n; j++) {
|
||||
keyMatrix[i][j] = in.nextInt();
|
||||
}
|
||||
}
|
||||
//check if det = 0
|
||||
if (determinant(keyMatrix, n) % 26 == 0) {
|
||||
System.out.println("Invalid key, as determinant = 0. Program Terminated");
|
||||
return;
|
||||
}
|
||||
//solving for the required plaintext message
|
||||
int[][] messageVector = new int[n][1];
|
||||
String PlainText = "";
|
||||
int plainMatrix[][] = new int[n][1];
|
||||
int j = 0;
|
||||
while (j < message.length()) {
|
||||
for (int i = 0; i < n; i++) {
|
||||
if (j >= message.length()) {
|
||||
messageVector[i][0] = 23;
|
||||
} else {
|
||||
messageVector[i][0] = (message.charAt(j)) % 65;
|
||||
}
|
||||
System.out.println(messageVector[i][0]);
|
||||
j++;
|
||||
}
|
||||
int x, i;
|
||||
for (i = 0; i < n; i++) {
|
||||
plainMatrix[i][0] = 0;
|
||||
|
||||
for (x = 0; x < n; x++) {
|
||||
plainMatrix[i][0] += keyMatrix[i][x] * messageVector[x][0];
|
||||
}
|
||||
|
||||
plainMatrix[i][0] = plainMatrix[i][0] % 26;
|
||||
}
|
||||
for (i = 0; i < n; i++) {
|
||||
PlainText += (char) (plainMatrix[i][0] + 65);
|
||||
}
|
||||
}
|
||||
System.out.println("Plaintext: " + PlainText);
|
||||
}
|
||||
|
||||
// Determinant calculator
|
||||
public static int determinant(int a[][], int n) {
|
||||
int det = 0, sign = 1, p = 0, q = 0;
|
||||
|
||||
if (n == 1) {
|
||||
det = a[0][0];
|
||||
} else {
|
||||
int b[][] = new int[n - 1][n - 1];
|
||||
for (int x = 0; x < n; x++) {
|
||||
p = 0;
|
||||
q = 0;
|
||||
for (int i = 1; i < n; i++) {
|
||||
for (int j = 0; j < n; j++) {
|
||||
if (j != x) {
|
||||
b[p][q++] = a[i][j];
|
||||
if (q % (n - 1) == 0) {
|
||||
p++;
|
||||
q = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
det = det + a[0][x] * determinant(b, n - 1) * sign;
|
||||
sign = -sign;
|
||||
}
|
||||
}
|
||||
return det;
|
||||
}
|
||||
|
||||
// Function to implement Hill Cipher
|
||||
static void hillcipher(String message) {
|
||||
message.toUpperCase();
|
||||
System.out.println("What do you want to process from the message?");
|
||||
System.out.println("Press 1: To Encrypt");
|
||||
System.out.println("Press 2: To Decrypt");
|
||||
short sc = in.nextShort();
|
||||
if (sc == 1) {
|
||||
encrypt(message);
|
||||
} else if (sc == 2) {
|
||||
decrypt(message);
|
||||
} else {
|
||||
System.out.println("Invalid input, program terminated.");
|
||||
}
|
||||
}
|
||||
|
||||
// Driver code
|
||||
public static void main(String[] args) {
|
||||
// Get the message to be encrypted
|
||||
System.out.println("Enter message");
|
||||
String message = in.nextLine();
|
||||
hillcipher(message);
|
||||
}
|
||||
}
|
72
src/main/java/com/thealgorithms/ciphers/ProductCipher.java
Normal file
72
src/main/java/com/thealgorithms/ciphers/ProductCipher.java
Normal file
@ -0,0 +1,72 @@
|
||||
package com.thealgorithms.ciphers;
|
||||
|
||||
import java.util.Scanner;
|
||||
|
||||
class ProductCipher {
|
||||
|
||||
public static void main(String args[]) {
|
||||
Scanner sc = new Scanner(System.in);
|
||||
System.out.println("Enter the input to be encrypted: ");
|
||||
String substitutionInput = sc.nextLine();
|
||||
System.out.println(" ");
|
||||
System.out.println("Enter a number: ");
|
||||
int n = sc.nextInt();
|
||||
|
||||
// Substitution encryption
|
||||
StringBuffer substitutionOutput = new StringBuffer();
|
||||
for (int i = 0; i < substitutionInput.length(); i++) {
|
||||
char c = substitutionInput.charAt(i);
|
||||
substitutionOutput.append((char) (c + 5));
|
||||
}
|
||||
System.out.println(" ");
|
||||
System.out.println("Substituted text: ");
|
||||
System.out.println(substitutionOutput);
|
||||
|
||||
// Transposition encryption
|
||||
String transpositionInput = substitutionOutput.toString();
|
||||
int modulus;
|
||||
if ((modulus = transpositionInput.length() % n) != 0) {
|
||||
modulus = n - modulus;
|
||||
|
||||
for (; modulus != 0; modulus--) {
|
||||
transpositionInput += "/";
|
||||
}
|
||||
}
|
||||
StringBuffer transpositionOutput = new StringBuffer();
|
||||
System.out.println(" ");
|
||||
System.out.println("Transposition Matrix: ");
|
||||
for (int i = 0; i < n; i++) {
|
||||
for (int j = 0; j < transpositionInput.length() / n; j++) {
|
||||
char c = transpositionInput.charAt(i + (j * n));
|
||||
System.out.print(c);
|
||||
transpositionOutput.append(c);
|
||||
}
|
||||
System.out.println();
|
||||
}
|
||||
System.out.println(" ");
|
||||
System.out.println("Final encrypted text: ");
|
||||
System.out.println(transpositionOutput);
|
||||
|
||||
// Transposition decryption
|
||||
n = transpositionOutput.length() / n;
|
||||
StringBuffer transpositionPlaintext = new StringBuffer();
|
||||
for (int i = 0; i < n; i++) {
|
||||
for (int j = 0; j < transpositionOutput.length() / n; j++) {
|
||||
char c = transpositionOutput.charAt(i + (j * n));
|
||||
transpositionPlaintext.append(c);
|
||||
}
|
||||
}
|
||||
|
||||
// Substitution decryption
|
||||
StringBuffer plaintext = new StringBuffer();
|
||||
for (int i = 0; i < transpositionPlaintext.length(); i++) {
|
||||
char c = transpositionPlaintext.charAt(i);
|
||||
plaintext.append((char) (c - 5));
|
||||
}
|
||||
|
||||
System.out.println("Plaintext: ");
|
||||
System.out.println(plaintext);
|
||||
sc.close();
|
||||
}
|
||||
|
||||
}
|
76
src/main/java/com/thealgorithms/ciphers/RSA.java
Normal file
76
src/main/java/com/thealgorithms/ciphers/RSA.java
Normal file
@ -0,0 +1,76 @@
|
||||
package com.thealgorithms.ciphers;
|
||||
|
||||
import javax.swing.*;
|
||||
import java.math.BigInteger;
|
||||
import java.security.SecureRandom;
|
||||
|
||||
/**
|
||||
* @author Nguyen Duy Tiep on 23-Oct-17.
|
||||
*/
|
||||
public final class RSA {
|
||||
|
||||
public static void main(String[] args) {
|
||||
|
||||
RSA rsa = new RSA(1024);
|
||||
String text1 = JOptionPane.showInputDialog("Enter a message to encrypt :");
|
||||
|
||||
String ciphertext = rsa.encrypt(text1);
|
||||
JOptionPane.showMessageDialog(null, "Your encrypted message : " + ciphertext);
|
||||
|
||||
JOptionPane.showMessageDialog(null, "Your message after decrypt : " + rsa.decrypt(ciphertext));
|
||||
}
|
||||
|
||||
private BigInteger modulus, privateKey, publicKey;
|
||||
|
||||
public RSA(int bits) {
|
||||
generateKeys(bits);
|
||||
}
|
||||
|
||||
/**
|
||||
* @return encrypted message
|
||||
*/
|
||||
public synchronized String encrypt(String message) {
|
||||
return (new BigInteger(message.getBytes())).modPow(publicKey, modulus).toString();
|
||||
}
|
||||
|
||||
/**
|
||||
* @return encrypted message as big integer
|
||||
*/
|
||||
public synchronized BigInteger encrypt(BigInteger message) {
|
||||
return message.modPow(publicKey, modulus);
|
||||
}
|
||||
|
||||
/**
|
||||
* @return plain message
|
||||
*/
|
||||
public synchronized String decrypt(String encryptedMessage) {
|
||||
return new String((new BigInteger(encryptedMessage)).modPow(privateKey, modulus).toByteArray());
|
||||
}
|
||||
|
||||
/**
|
||||
* @return plain message as big integer
|
||||
*/
|
||||
public synchronized BigInteger decrypt(BigInteger encryptedMessage) {
|
||||
return encryptedMessage.modPow(privateKey, modulus);
|
||||
}
|
||||
|
||||
/**
|
||||
* Generate a new public and private key set.
|
||||
*/
|
||||
public synchronized void generateKeys(int bits) {
|
||||
SecureRandom r = new SecureRandom();
|
||||
BigInteger p = new BigInteger(bits / 2, 100, r);
|
||||
BigInteger q = new BigInteger(bits / 2, 100, r);
|
||||
modulus = p.multiply(q);
|
||||
|
||||
BigInteger m = (p.subtract(BigInteger.ONE)).multiply(q.subtract(BigInteger.ONE));
|
||||
|
||||
publicKey = new BigInteger("3");
|
||||
|
||||
while (m.gcd(publicKey).intValue() > 1) {
|
||||
publicKey = publicKey.add(new BigInteger("2"));
|
||||
}
|
||||
|
||||
privateKey = publicKey.modInverse(m);
|
||||
}
|
||||
}
|
92
src/main/java/com/thealgorithms/ciphers/SimpleSubCipher.java
Normal file
92
src/main/java/com/thealgorithms/ciphers/SimpleSubCipher.java
Normal file
@ -0,0 +1,92 @@
|
||||
package com.thealgorithms.ciphers;
|
||||
|
||||
import java.util.HashMap;
|
||||
import java.util.Map;
|
||||
|
||||
/**
|
||||
* The simple substitution cipher is a cipher that has been in use for many
|
||||
* hundreds of years (an excellent history is given in Simon Singhs 'the Code
|
||||
* Book'). It basically consists of substituting every plaintext character for a
|
||||
* different ciphertext character. It differs from the Caesar cipher in that the
|
||||
* cipher alphabet is not simply the alphabet shifted, it is completely jumbled.
|
||||
*/
|
||||
public class SimpleSubCipher {
|
||||
|
||||
/**
|
||||
* Encrypt text by replacing each element with its opposite character.
|
||||
*
|
||||
* @param message
|
||||
* @param cipherSmall
|
||||
* @return Encrypted message
|
||||
*/
|
||||
public static String encode(String message, String cipherSmall) {
|
||||
String encoded = "";
|
||||
|
||||
// This map is used to encode
|
||||
Map<Character, Character> cipherMap = new HashMap<>();
|
||||
|
||||
char beginSmallLetter = 'a';
|
||||
char beginCapitalLetter = 'A';
|
||||
|
||||
cipherSmall = cipherSmall.toLowerCase();
|
||||
String cipherCapital = cipherSmall.toUpperCase();
|
||||
|
||||
// To handle Small and Capital letters
|
||||
for (int i = 0; i < cipherSmall.length(); i++) {
|
||||
cipherMap.put(beginSmallLetter++, cipherSmall.charAt(i));
|
||||
cipherMap.put(beginCapitalLetter++, cipherCapital.charAt(i));
|
||||
}
|
||||
|
||||
for (int i = 0; i < message.length(); i++) {
|
||||
if (Character.isAlphabetic(message.charAt(i))) {
|
||||
encoded += cipherMap.get(message.charAt(i));
|
||||
} else {
|
||||
encoded += message.charAt(i);
|
||||
}
|
||||
}
|
||||
|
||||
return encoded;
|
||||
}
|
||||
|
||||
/**
|
||||
* Decrypt message by replacing each element with its opposite character in
|
||||
* cipher.
|
||||
*
|
||||
* @param encryptedMessage
|
||||
* @param cipherSmall
|
||||
* @return message
|
||||
*/
|
||||
public static String decode(String encryptedMessage, String cipherSmall) {
|
||||
String decoded = "";
|
||||
|
||||
Map<Character, Character> cipherMap = new HashMap<Character, Character>();
|
||||
|
||||
char beginSmallLetter = 'a';
|
||||
char beginCapitalLetter = 'A';
|
||||
|
||||
cipherSmall = cipherSmall.toLowerCase();
|
||||
String cipherCapital = cipherSmall.toUpperCase();
|
||||
|
||||
for (int i = 0; i < cipherSmall.length(); i++) {
|
||||
cipherMap.put(cipherSmall.charAt(i), beginSmallLetter++);
|
||||
cipherMap.put(cipherCapital.charAt(i), beginCapitalLetter++);
|
||||
}
|
||||
|
||||
for (int i = 0; i < encryptedMessage.length(); i++) {
|
||||
if (Character.isAlphabetic(encryptedMessage.charAt(i))) {
|
||||
decoded += cipherMap.get(encryptedMessage.charAt(i));
|
||||
} else {
|
||||
decoded += encryptedMessage.charAt(i);
|
||||
}
|
||||
}
|
||||
|
||||
return decoded;
|
||||
}
|
||||
|
||||
public static void main(String[] args) {
|
||||
String a = encode("defend the east wall of the castle", "phqgiumeaylnofdxjkrcvstzwb");
|
||||
String b = decode(a, "phqgiumeaylnofdxjkrcvstzwb");
|
||||
System.out.println(b);
|
||||
}
|
||||
|
||||
}
|
@ -0,0 +1,92 @@
|
||||
package com.thealgorithms.ciphers;
|
||||
|
||||
import java.util.HashMap;
|
||||
import java.util.Map;
|
||||
|
||||
/**
|
||||
* The simple substitution cipher is a cipher that has been in use for many
|
||||
* hundreds of years (an excellent history is given in Simon Singhs 'the Code
|
||||
* Book'). It basically consists of substituting every plaintext character for a
|
||||
* different ciphertext character. It differs from the Caesar cipher in that the
|
||||
* cipher alphabet is not simply the alphabet shifted, it is completely jumbled.
|
||||
*
|
||||
* @author Hassan Elseoudy
|
||||
*/
|
||||
public class SimpleSubstitutionCipher {
|
||||
|
||||
/**
|
||||
* Encrypt text by replacing each element with its opposite character.
|
||||
*
|
||||
* @return Encrypted message
|
||||
*/
|
||||
public static String encode(String message, String cipherSmall) {
|
||||
StringBuilder encoded = new StringBuilder();
|
||||
|
||||
// This map is used to encode
|
||||
Map<Character, Character> cipherMap = new HashMap<>();
|
||||
|
||||
char beginSmallLetter = 'a';
|
||||
char beginCapitalLetter = 'A';
|
||||
|
||||
cipherSmall = cipherSmall.toLowerCase();
|
||||
String cipherCapital = cipherSmall.toUpperCase();
|
||||
|
||||
// To handle Small and Capital letters
|
||||
for (int i = 0; i < cipherSmall.length(); i++) {
|
||||
cipherMap.put(beginSmallLetter++, cipherSmall.charAt(i));
|
||||
cipherMap.put(beginCapitalLetter++, cipherCapital.charAt(i));
|
||||
}
|
||||
|
||||
for (int i = 0; i < message.length(); i++) {
|
||||
if (Character.isAlphabetic(message.charAt(i))) {
|
||||
encoded.append(cipherMap.get(message.charAt(i)));
|
||||
} else {
|
||||
encoded.append(message.charAt(i));
|
||||
}
|
||||
}
|
||||
|
||||
return encoded.toString();
|
||||
}
|
||||
|
||||
/**
|
||||
* Decrypt message by replacing each element with its opposite character in
|
||||
* cipher.
|
||||
*
|
||||
* @return message
|
||||
*/
|
||||
public static String decode(String encryptedMessage, String cipherSmall) {
|
||||
StringBuilder decoded = new StringBuilder();
|
||||
|
||||
Map<Character, Character> cipherMap = new HashMap<>();
|
||||
|
||||
char beginSmallLetter = 'a';
|
||||
char beginCapitalLetter = 'A';
|
||||
|
||||
cipherSmall = cipherSmall.toLowerCase();
|
||||
String cipherCapital = cipherSmall.toUpperCase();
|
||||
|
||||
for (int i = 0; i < cipherSmall.length(); i++) {
|
||||
cipherMap.put(cipherSmall.charAt(i), beginSmallLetter++);
|
||||
cipherMap.put(cipherCapital.charAt(i), beginCapitalLetter++);
|
||||
}
|
||||
|
||||
for (int i = 0; i < encryptedMessage.length(); i++) {
|
||||
if (Character.isAlphabetic(encryptedMessage.charAt(i))) {
|
||||
decoded.append(cipherMap.get(encryptedMessage.charAt(i)));
|
||||
} else {
|
||||
decoded.append(encryptedMessage.charAt(i));
|
||||
}
|
||||
}
|
||||
|
||||
return decoded.toString();
|
||||
}
|
||||
|
||||
/**
|
||||
* TODO remove main and make JUnit Testing
|
||||
*/
|
||||
public static void main(String[] args) {
|
||||
String a = encode("defend the east wall of the castle", "phqgiumeaylnofdxjkrcvstzwb");
|
||||
String b = decode(a, "phqgiumeaylnofdxjkrcvstzwb");
|
||||
System.out.println(b);
|
||||
}
|
||||
}
|
62
src/main/java/com/thealgorithms/ciphers/Vigenere.java
Normal file
62
src/main/java/com/thealgorithms/ciphers/Vigenere.java
Normal file
@ -0,0 +1,62 @@
|
||||
package com.thealgorithms.ciphers;
|
||||
|
||||
/**
|
||||
* A Java implementation of Vigenere Cipher.
|
||||
*
|
||||
* @author straiffix
|
||||
* @author beingmartinbmc
|
||||
*/
|
||||
public class Vigenere {
|
||||
|
||||
public static String encrypt(final String message, final String key) {
|
||||
|
||||
StringBuilder result = new StringBuilder();
|
||||
|
||||
for (int i = 0, j = 0; i < message.length(); i++) {
|
||||
char c = message.charAt(i);
|
||||
if (Character.isLetter(c)) {
|
||||
if (Character.isUpperCase(c)) {
|
||||
result.append((char) ((c + key.toUpperCase().charAt(j) - 2 * 'A') % 26 + 'A'));
|
||||
|
||||
} else {
|
||||
result.append((char) ((c + key.toLowerCase().charAt(j) - 2 * 'a') % 26 + 'a'));
|
||||
}
|
||||
} else {
|
||||
result.append(c);
|
||||
}
|
||||
j = ++j % key.length();
|
||||
}
|
||||
return result.toString();
|
||||
}
|
||||
|
||||
public static String decrypt(final String message, final String key) {
|
||||
StringBuilder result = new StringBuilder();
|
||||
|
||||
for (int i = 0, j = 0; i < message.length(); i++) {
|
||||
|
||||
char c = message.charAt(i);
|
||||
if (Character.isLetter(c)) {
|
||||
if (Character.isUpperCase(c)) {
|
||||
result.append((char) ('Z' - (25 - (c - key.toUpperCase().charAt(j))) % 26));
|
||||
|
||||
} else {
|
||||
result.append((char) ('z' - (25 - (c - key.toLowerCase().charAt(j))) % 26));
|
||||
}
|
||||
} else {
|
||||
result.append(c);
|
||||
}
|
||||
|
||||
j = ++j % key.length();
|
||||
}
|
||||
return result.toString();
|
||||
}
|
||||
|
||||
public static void main(String[] args) {
|
||||
String text = "Hello World!";
|
||||
String key = "itsakey";
|
||||
System.out.println(text);
|
||||
String ciphertext = encrypt(text, key);
|
||||
System.out.println(ciphertext);
|
||||
System.out.println(decrypt(ciphertext, key));
|
||||
}
|
||||
}
|
Reference in New Issue
Block a user