style: enable MultipleVariableDeclarations in checkstyle (#5175)

Co-authored-by: vaibhav <vaibhav.waghmare@techprescient.com>
This commit is contained in:
vaibhav9t1
2024-05-25 23:48:27 +05:30
committed by GitHub
parent 44ce6e7b0d
commit 9eaa2bb756
82 changed files with 299 additions and 121 deletions

View File

@ -24,7 +24,8 @@ public final class AutomorphicNumber {
public static boolean isAutomorphic(long n) {
if (n < 0) return false;
long square = n * n; // Calculating square of the number
long t = n, numberOfdigits = 0;
long t = n;
long numberOfdigits = 0;
while (t > 0) {
numberOfdigits++; // Calculating number of digits in n
t /= 10;

View File

@ -13,7 +13,10 @@ public final class DeterminantOfMatrix {
// Determinant calculator
//@return determinant of the input matrix
static int determinant(int[][] a, int n) {
int det = 0, sign = 1, p = 0, q = 0;
int det = 0;
int sign = 1;
int p = 0;
int q = 0;
if (n == 1) {
det = a[0][0];
} else {

View File

@ -24,7 +24,8 @@ public final class FFT {
*/
static class Complex {
private double real, img;
private double real;
private double img;
/**
* Default Constructor. Creates the complex number 0.

View File

@ -41,7 +41,8 @@ public final class FindKthNumber {
}
private static int findKthMax(int[] nums, int k) {
int start = 0, end = nums.length;
int start = 0;
int end = nums.length;
while (start < end) {
int pivot = partition(nums, start, end);
if (k == pivot) {

View File

@ -8,7 +8,8 @@ public final class Gaussian {
public static ArrayList<Double> gaussian(int mat_size, ArrayList<Double> matrix) {
ArrayList<Double> answerArray = new ArrayList<Double>();
int i, j = 0;
int i;
int j = 0;
double[][] mat = new double[mat_size + 1][mat_size + 1];
double[][] x = new double[mat_size][mat_size + 1];
@ -43,7 +44,8 @@ public final class Gaussian {
// calculate the x_1, x_2, ... values of the gaussian and save it in an arraylist.
public static ArrayList<Double> valueOfGaussian(int mat_size, double[][] x, double[][] mat) {
ArrayList<Double> answerArray = new ArrayList<Double>();
int i, j;
int i;
int j;
for (i = 0; i < mat_size; i++) {
for (j = 0; j <= mat_size; j++) {

View File

@ -11,9 +11,10 @@ final class KeithNumber {
// user-defined function that checks if the given number is Keith or not
static boolean isKeith(int x) {
// List stores all the digits of the X
ArrayList<Integer> terms = new ArrayList<Integer>();
ArrayList<Integer> terms = new ArrayList<>();
// n denotes the number of digits
int temp = x, n = 0;
int temp = x;
int n = 0;
// executes until the condition becomes false
while (temp > 0) {
// determines the last digit of the number and add it to the List
@ -25,7 +26,8 @@ final class KeithNumber {
}
// reverse the List
Collections.reverse(terms);
int next_term = 0, i = n;
int next_term = 0;
int i = n;
// finds next term for the series
// loop executes until the condition returns true
while (next_term < x) {

View File

@ -30,7 +30,8 @@ public final class LeastCommonMultiple {
* get least common multiple from two number
*/
public static int lcm(int num1, int num2) {
int high, num3;
int high;
int num3;
int cmv = 0;
/*
* value selection for the numerator

View File

@ -13,7 +13,8 @@ public final class NonRepeatingElement {
public static void main(String[] args) {
try (Scanner sc = new Scanner(System.in)) {
int i, res = 0;
int i;
int res = 0;
System.out.println("Enter the number of elements in the array");
int n = sc.nextInt();
if ((n & 1) == 1) {
@ -42,7 +43,8 @@ public final class NonRepeatingElement {
// Finding the rightmost set bit
res = res & (-res);
int num1 = 0, num2 = 0;
int num1 = 0;
int num2 = 0;
for (i = 0; i < n; i++) {
if ((res & arr[i]) > 0) { // Case 1 explained below

View File

@ -59,7 +59,9 @@ public final class PollardRho {
* @throws RuntimeException object if GCD of given number cannot be found
*/
static int pollardRho(int number) {
int x = 2, y = 2, d = 1;
int x = 2;
int y = 2;
int d = 1;
while (d == 1) {
// tortoise move
x = g(x, number);

View File

@ -56,7 +56,8 @@ public final class PrimeCheck {
*/
public static boolean fermatPrimeChecking(int n, int iteration) {
long a;
int up = n - 2, down = 2;
int up = n - 2;
int down = 2;
for (int i = 0; i < iteration; i++) {
a = (long) Math.floor(Math.random() * (up - down + 1) + down);
if (modPow(a, n - 1, n) != 1) {