refactor: Anagrams (#5390)

This commit is contained in:
Alex Klymenko
2024-08-26 07:26:01 +02:00
committed by GitHub
parent 7e9cdad3ee
commit 93e417544d
2 changed files with 151 additions and 137 deletions

View File

@ -10,141 +10,130 @@ import java.util.HashMap;
* also the word binary into brainy and the word adobe into abode.
* Reference from https://en.wikipedia.org/wiki/Anagram
*/
public class Anagrams {
public final class Anagrams {
private Anagrams() {
}
/**
* 4 approaches are provided for anagram checking. approach 2 and approach 3 are similar but
* differ in running time.
* OUTPUT :
* first string ="deal" second string ="lead"
* Output: Anagram
* Input and output is constant for all four approaches
* 1st approach Time Complexity : O(n logn)
* Auxiliary Space Complexity : O(1)
* 2nd approach Time Complexity : O(n)
* Auxiliary Space Complexity : O(1)
* 3rd approach Time Complexity : O(n)
* Auxiliary Space Complexity : O(1)
* 4th approach Time Complexity : O(n)
* Auxiliary Space Complexity : O(n)
* 5th approach Time Complexity: O(n)
* Auxiliary Space Complexity: O(1)
* Checks if two strings are anagrams by sorting the characters and comparing them.
* Time Complexity: O(n log n)
* Space Complexity: O(n)
*
* @param s the first string
* @param t the second string
* @return true if the strings are anagrams, false otherwise
*/
public static void main(String[] args) {
String first = "deal";
String second = "lead";
// All the below methods takes input but doesn't return any output to the main method.
Anagrams nm = new Anagrams();
System.out.println(nm.approach2(first, second)); /* To activate methods for different approaches*/
System.out.println(nm.approach1(first, second)); /* To activate methods for different approaches*/
System.out.println(nm.approach3(first, second)); /* To activate methods for different approaches*/
System.out.println(nm.approach4(first, second)); /* To activate methods for different approaches*/
}
boolean approach1(String s, String t) {
if (s.length() != t.length()) {
return false;
} else {
char[] c = s.toCharArray();
char[] d = t.toCharArray();
Arrays.sort(c);
Arrays.sort(d); /* In this approach the strings are stored in the character arrays and
both the arrays are sorted. After that both the arrays are compared
for checking anangram */
return Arrays.equals(c, d);
}
}
boolean approach2(String a, String b) {
if (a.length() != b.length()) {
return false;
} else {
int[] m = new int[26];
int[] n = new int[26];
for (char c : a.toCharArray()) {
m[c - 'a']++;
}
// In this approach the frequency of both the strings are stored and after that the
// frequencies are iterated from 0 to 26(from 'a' to 'z' ). If the frequencies match
// then anagram message is displayed in the form of boolean format Running time and
// space complexity of this algo is less as compared to others
for (char c : b.toCharArray()) {
n[c - 'a']++;
}
for (int i = 0; i < 26; i++) {
if (m[i] != n[i]) {
return false;
}
}
return true;
}
}
boolean approach3(String s, String t) {
public static boolean approach1(String s, String t) {
if (s.length() != t.length()) {
return false;
}
// this is similar to approach number 2 but here the string is not converted to character
// array
else {
int[] a = new int[26];
int[] b = new int[26];
int k = s.length();
for (int i = 0; i < k; i++) {
a[s.charAt(i) - 'a']++;
b[t.charAt(i) - 'a']++;
}
for (int i = 0; i < 26; i++) {
if (a[i] != b[i]) {
return false;
}
}
return true;
}
char[] c = s.toCharArray();
char[] d = t.toCharArray();
Arrays.sort(c);
Arrays.sort(d);
return Arrays.equals(c, d);
}
boolean approach4(String s, String t) {
/**
* Checks if two strings are anagrams by counting the frequency of each character.
* Time Complexity: O(n)
* Space Complexity: O(1)
*
* @param s the first string
* @param t the second string
* @return true if the strings are anagrams, false otherwise
*/
public static boolean approach2(String s, String t) {
if (s.length() != t.length()) {
return false;
}
// This approach is done using hashmap where frequencies are stored and checked iteratively
// and if all the frequencies of first string match with the second string then anagram
// message is displayed in boolean format
else {
HashMap<Character, Integer> nm = new HashMap<>();
HashMap<Character, Integer> kk = new HashMap<>();
for (char c : s.toCharArray()) {
nm.put(c, nm.getOrDefault(c, 0) + 1);
}
for (char c : t.toCharArray()) {
kk.put(c, kk.getOrDefault(c, 0) + 1);
}
// It checks for equal frequencies by comparing key-value pairs of two hashmaps
return nm.equals(kk);
}
}
boolean approach5(String s, String t) {
if (s.length() != t.length()) {
return false;
}
// Approach is different from above 4 aproaches.
// Here we initialize an array of size 26 where each element corresponds to the frequency of
// a character.
int[] freq = new int[26];
// iterate through both strings, incrementing the frequency of each character in the first
// string and decrementing the frequency of each character in the second string.
int[] charCount = new int[26];
for (int i = 0; i < s.length(); i++) {
int pos1 = s.charAt(i) - 'a';
int pos2 = s.charAt(i) - 'a';
freq[pos1]++;
freq[pos2]--;
charCount[s.charAt(i) - 'a']++;
charCount[t.charAt(i) - 'a']--;
}
// iterate through the frequency array and check if all the elements are zero, if so return
// true else false
for (int i = 0; i < 26; i++) {
if (freq[i] != 0) {
for (int count : charCount) {
if (count != 0) {
return false;
}
}
return true;
}
/**
* Checks if two strings are anagrams by counting the frequency of each character
* using a single array.
* Time Complexity: O(n)
* Space Complexity: O(1)
*
* @param s the first string
* @param t the second string
* @return true if the strings are anagrams, false otherwise
*/
public static boolean approach3(String s, String t) {
if (s.length() != t.length()) {
return false;
}
int[] charCount = new int[26];
for (int i = 0; i < s.length(); i++) {
charCount[s.charAt(i) - 'a']++;
charCount[t.charAt(i) - 'a']--;
}
for (int count : charCount) {
if (count != 0) {
return false;
}
}
return true;
}
/**
* Checks if two strings are anagrams using a HashMap to store character frequencies.
* Time Complexity: O(n)
* Space Complexity: O(n)
*
* @param s the first string
* @param t the second string
* @return true if the strings are anagrams, false otherwise
*/
public static boolean approach4(String s, String t) {
if (s.length() != t.length()) {
return false;
}
HashMap<Character, Integer> charCountMap = new HashMap<>();
for (char c : s.toCharArray()) {
charCountMap.put(c, charCountMap.getOrDefault(c, 0) + 1);
}
for (char c : t.toCharArray()) {
if (!charCountMap.containsKey(c) || charCountMap.get(c) == 0) {
return false;
}
charCountMap.put(c, charCountMap.get(c) - 1);
}
return charCountMap.values().stream().allMatch(count -> count == 0);
}
/**
* Checks if two strings are anagrams using an array to track character frequencies.
* This approach optimizes space complexity by using only one array.
* Time Complexity: O(n)
* Space Complexity: O(1)
*
* @param s the first string
* @param t the second string
* @return true if the strings are anagrams, false otherwise
*/
public static boolean approach5(String s, String t) {
if (s.length() != t.length()) {
return false;
}
int[] freq = new int[26];
for (int i = 0; i < s.length(); i++) {
freq[s.charAt(i) - 'a']++;
freq[t.charAt(i) - 'a']--;
}
for (int count : freq) {
if (count != 0) {
return false;
}
}