mirror of
https://github.com/TheAlgorithms/Java.git
synced 2025-07-24 21:14:00 +08:00
Merge pull request #1325 from mariaRoxana94/fix-error
Fixed 8XCorrectness_Bugs + 10XBad_Practice_Bugs + 14XDodgy_Code_Bugs
This commit is contained in:
@ -1,192 +1,219 @@
|
||||
package Others;
|
||||
|
||||
|
||||
/**
|
||||
* Dijkstra's algorithm,is a graph search algorithm that solves the single-source
|
||||
* shortest path problem for a graph with nonnegative edge path costs, producing
|
||||
* a shortest path tree.
|
||||
* <p>
|
||||
* NOTE: The inputs to Dijkstra's algorithm are a directed and weighted graph consisting
|
||||
* of 2 or more nodes, generally represented by an adjacency matrix or list, and a start node.
|
||||
* <p>
|
||||
* Original source of code: https://rosettacode.org/wiki/Dijkstra%27s_algorithm#Java
|
||||
* Also most of the comments are from RosettaCode.
|
||||
*/
|
||||
|
||||
import java.util.*;
|
||||
|
||||
public class Dijkstra {
|
||||
private static final Graph.Edge[] GRAPH = {
|
||||
// Distance from node "a" to node "b" is 7.
|
||||
// In the current Graph there is no way to move the other way (e,g, from "b" to "a"),
|
||||
// a new edge would be needed for that
|
||||
new Graph.Edge("a", "b", 7),
|
||||
new Graph.Edge("a", "c", 9),
|
||||
new Graph.Edge("a", "f", 14),
|
||||
new Graph.Edge("b", "c", 10),
|
||||
new Graph.Edge("b", "d", 15),
|
||||
new Graph.Edge("c", "d", 11),
|
||||
new Graph.Edge("c", "f", 2),
|
||||
new Graph.Edge("d", "e", 6),
|
||||
new Graph.Edge("e", "f", 9),
|
||||
};
|
||||
private static final String START = "a";
|
||||
private static final String END = "e";
|
||||
|
||||
/**
|
||||
* main function
|
||||
* Will run the code with "GRAPH" that was defined above.
|
||||
*/
|
||||
public static void main(String[] args) {
|
||||
Graph g = new Graph(GRAPH);
|
||||
g.dijkstra(START);
|
||||
g.printPath(END);
|
||||
//g.printAllPaths();
|
||||
}
|
||||
}
|
||||
|
||||
class Graph {
|
||||
// mapping of vertex names to Vertex objects, built from a set of Edges
|
||||
private final Map<String, Vertex> graph;
|
||||
|
||||
/**
|
||||
* One edge of the graph (only used by Graph constructor)
|
||||
*/
|
||||
public static class Edge {
|
||||
public final String v1, v2;
|
||||
public final int dist;
|
||||
|
||||
public Edge(String v1, String v2, int dist) {
|
||||
this.v1 = v1;
|
||||
this.v2 = v2;
|
||||
this.dist = dist;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* One vertex of the graph, complete with mappings to neighbouring vertices
|
||||
*/
|
||||
public static class Vertex implements Comparable<Vertex> {
|
||||
public final String name;
|
||||
// MAX_VALUE assumed to be infinity
|
||||
public int dist = Integer.MAX_VALUE;
|
||||
public Vertex previous = null;
|
||||
public final Map<Vertex, Integer> neighbours = new HashMap<>();
|
||||
|
||||
public Vertex(String name) {
|
||||
this.name = name;
|
||||
}
|
||||
|
||||
private void printPath() {
|
||||
if (this == this.previous) {
|
||||
System.out.printf("%s", this.name);
|
||||
} else if (this.previous == null) {
|
||||
System.out.printf("%s(unreached)", this.name);
|
||||
} else {
|
||||
this.previous.printPath();
|
||||
System.out.printf(" -> %s(%d)", this.name, this.dist);
|
||||
}
|
||||
}
|
||||
|
||||
public int compareTo(Vertex other) {
|
||||
if (dist == other.dist)
|
||||
return name.compareTo(other.name);
|
||||
|
||||
return Integer.compare(dist, other.dist);
|
||||
}
|
||||
|
||||
@Override
|
||||
public String toString() {
|
||||
return "(" + name + ", " + dist + ")";
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Builds a graph from a set of edges
|
||||
*/
|
||||
public Graph(Edge[] edges) {
|
||||
graph = new HashMap<>(edges.length);
|
||||
|
||||
// one pass to find all vertices
|
||||
for (Edge e : edges) {
|
||||
if (!graph.containsKey(e.v1)) graph.put(e.v1, new Vertex(e.v1));
|
||||
if (!graph.containsKey(e.v2)) graph.put(e.v2, new Vertex(e.v2));
|
||||
}
|
||||
|
||||
// another pass to set neighbouring vertices
|
||||
for (Edge e : edges) {
|
||||
graph.get(e.v1).neighbours.put(graph.get(e.v2), e.dist);
|
||||
// graph.get(e.v2).neighbours.put(graph.get(e.v1), e.dist); // also do this for an undirected graph
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Runs dijkstra using a specified source vertex
|
||||
*/
|
||||
public void dijkstra(String startName) {
|
||||
if (!graph.containsKey(startName)) {
|
||||
System.err.printf("Graph doesn't contain start vertex \"%s\"\n", startName);
|
||||
return;
|
||||
}
|
||||
final Vertex source = graph.get(startName);
|
||||
NavigableSet<Vertex> q = new TreeSet<>();
|
||||
|
||||
// set-up vertices
|
||||
for (Vertex v : graph.values()) {
|
||||
v.previous = v == source ? source : null;
|
||||
v.dist = v == source ? 0 : Integer.MAX_VALUE;
|
||||
q.add(v);
|
||||
}
|
||||
|
||||
dijkstra(q);
|
||||
}
|
||||
|
||||
/**
|
||||
* Implementation of dijkstra's algorithm using a binary heap.
|
||||
*/
|
||||
private void dijkstra(final NavigableSet<Vertex> q) {
|
||||
Vertex u, v;
|
||||
while (!q.isEmpty()) {
|
||||
// vertex with shortest distance (first iteration will return source)
|
||||
u = q.pollFirst();
|
||||
if (u.dist == Integer.MAX_VALUE)
|
||||
break; // we can ignore u (and any other remaining vertices) since they are unreachable
|
||||
|
||||
// look at distances to each neighbour
|
||||
for (Map.Entry<Vertex, Integer> a : u.neighbours.entrySet()) {
|
||||
v = a.getKey(); // the neighbour in this iteration
|
||||
|
||||
final int alternateDist = u.dist + a.getValue();
|
||||
if (alternateDist < v.dist) { // shorter path to neighbour found
|
||||
q.remove(v);
|
||||
v.dist = alternateDist;
|
||||
v.previous = u;
|
||||
q.add(v);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Prints a path from the source to the specified vertex
|
||||
*/
|
||||
public void printPath(String endName) {
|
||||
if (!graph.containsKey(endName)) {
|
||||
System.err.printf("Graph doesn't contain end vertex \"%s\"\n", endName);
|
||||
return;
|
||||
}
|
||||
|
||||
graph.get(endName).printPath();
|
||||
System.out.println();
|
||||
}
|
||||
|
||||
/**
|
||||
* Prints the path from the source to every vertex (output order is not guaranteed)
|
||||
*/
|
||||
public void printAllPaths() {
|
||||
for (Vertex v : graph.values()) {
|
||||
v.printPath();
|
||||
System.out.println();
|
||||
}
|
||||
}
|
||||
package Others;
|
||||
|
||||
|
||||
/**
|
||||
* Dijkstra's algorithm,is a graph search algorithm that solves the single-source
|
||||
* shortest path problem for a graph with nonnegative edge path costs, producing
|
||||
* a shortest path tree.
|
||||
* <p>
|
||||
* NOTE: The inputs to Dijkstra's algorithm are a directed and weighted graph consisting
|
||||
* of 2 or more nodes, generally represented by an adjacency matrix or list, and a start node.
|
||||
* <p>
|
||||
* Original source of code: https://rosettacode.org/wiki/Dijkstra%27s_algorithm#Java
|
||||
* Also most of the comments are from RosettaCode.
|
||||
*/
|
||||
|
||||
import java.util.*;
|
||||
|
||||
public class Dijkstra {
|
||||
private static final Graph.Edge[] GRAPH = {
|
||||
// Distance from node "a" to node "b" is 7.
|
||||
// In the current Graph there is no way to move the other way (e,g, from "b" to "a"),
|
||||
// a new edge would be needed for that
|
||||
new Graph.Edge("a", "b", 7),
|
||||
new Graph.Edge("a", "c", 9),
|
||||
new Graph.Edge("a", "f", 14),
|
||||
new Graph.Edge("b", "c", 10),
|
||||
new Graph.Edge("b", "d", 15),
|
||||
new Graph.Edge("c", "d", 11),
|
||||
new Graph.Edge("c", "f", 2),
|
||||
new Graph.Edge("d", "e", 6),
|
||||
new Graph.Edge("e", "f", 9),
|
||||
};
|
||||
private static final String START = "a";
|
||||
private static final String END = "e";
|
||||
|
||||
/**
|
||||
* main function
|
||||
* Will run the code with "GRAPH" that was defined above.
|
||||
*/
|
||||
public static void main(String[] args) {
|
||||
Graph g = new Graph(GRAPH);
|
||||
g.dijkstra(START);
|
||||
g.printPath(END);
|
||||
//g.printAllPaths();
|
||||
}
|
||||
}
|
||||
|
||||
class Graph {
|
||||
// mapping of vertex names to Vertex objects, built from a set of Edges
|
||||
private final Map<String, Vertex> graph;
|
||||
|
||||
/**
|
||||
* One edge of the graph (only used by Graph constructor)
|
||||
*/
|
||||
public static class Edge {
|
||||
public final String v1, v2;
|
||||
public final int dist;
|
||||
|
||||
public Edge(String v1, String v2, int dist) {
|
||||
this.v1 = v1;
|
||||
this.v2 = v2;
|
||||
this.dist = dist;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* One vertex of the graph, complete with mappings to neighbouring vertices
|
||||
*/
|
||||
public static class Vertex implements Comparable<Vertex> {
|
||||
public final String name;
|
||||
// MAX_VALUE assumed to be infinity
|
||||
public int dist = Integer.MAX_VALUE;
|
||||
public Vertex previous = null;
|
||||
public final Map<Vertex, Integer> neighbours = new HashMap<>();
|
||||
|
||||
public Vertex(String name) {
|
||||
this.name = name;
|
||||
}
|
||||
|
||||
private void printPath() {
|
||||
if (this == this.previous) {
|
||||
System.out.printf("%s", this.name);
|
||||
} else if (this.previous == null) {
|
||||
System.out.printf("%s(unreached)", this.name);
|
||||
} else {
|
||||
this.previous.printPath();
|
||||
System.out.printf(" -> %s(%d)", this.name, this.dist);
|
||||
}
|
||||
}
|
||||
|
||||
public int compareTo(Vertex other) {
|
||||
if (dist == other.dist)
|
||||
return name.compareTo(other.name);
|
||||
|
||||
return Integer.compare(dist, other.dist);
|
||||
}
|
||||
|
||||
@Override
|
||||
public boolean equals(Object object) {
|
||||
if (this == object) return true;
|
||||
if (object == null || getClass() != object.getClass()) return false;
|
||||
if (!super.equals(object)) return false;
|
||||
|
||||
Vertex vertex = (Vertex) object;
|
||||
|
||||
if (dist != vertex.dist) return false;
|
||||
if (name != null ? !name.equals(vertex.name) : vertex.name != null) return false;
|
||||
if (previous != null ? !previous.equals(vertex.previous) : vertex.previous != null) return false;
|
||||
if (neighbours != null ? !neighbours.equals(vertex.neighbours) : vertex.neighbours != null) return false;
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
@Override
|
||||
public int hashCode() {
|
||||
int result = super.hashCode();
|
||||
result = 31 * result + (name != null ? name.hashCode() : 0);
|
||||
result = 31 * result + dist;
|
||||
result = 31 * result + (previous != null ? previous.hashCode() : 0);
|
||||
result = 31 * result + (neighbours != null ? neighbours.hashCode() : 0);
|
||||
return result;
|
||||
}
|
||||
|
||||
@Override
|
||||
public String toString() {
|
||||
return "(" + name + ", " + dist + ")";
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Builds a graph from a set of edges
|
||||
*/
|
||||
public Graph(Edge[] edges) {
|
||||
graph = new HashMap<>(edges.length);
|
||||
|
||||
// one pass to find all vertices
|
||||
for (Edge e : edges) {
|
||||
if (!graph.containsKey(e.v1)) graph.put(e.v1, new Vertex(e.v1));
|
||||
if (!graph.containsKey(e.v2)) graph.put(e.v2, new Vertex(e.v2));
|
||||
}
|
||||
|
||||
// another pass to set neighbouring vertices
|
||||
for (Edge e : edges) {
|
||||
graph.get(e.v1).neighbours.put(graph.get(e.v2), e.dist);
|
||||
// graph.get(e.v2).neighbours.put(graph.get(e.v1), e.dist); // also do this for an undirected graph
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Runs dijkstra using a specified source vertex
|
||||
*/
|
||||
public void dijkstra(String startName) {
|
||||
if (!graph.containsKey(startName)) {
|
||||
System.err.printf("Graph doesn't contain start vertex \"%s\"%n", startName);
|
||||
return;
|
||||
}
|
||||
final Vertex source = graph.get(startName);
|
||||
NavigableSet<Vertex> q = new TreeSet<>();
|
||||
|
||||
// set-up vertices
|
||||
for (Vertex v : graph.values()) {
|
||||
v.previous = v == source ? source : null;
|
||||
v.dist = v == source ? 0 : Integer.MAX_VALUE;
|
||||
q.add(v);
|
||||
}
|
||||
|
||||
dijkstra(q);
|
||||
}
|
||||
|
||||
/**
|
||||
* Implementation of dijkstra's algorithm using a binary heap.
|
||||
*/
|
||||
private void dijkstra(final NavigableSet<Vertex> q) {
|
||||
Vertex u, v;
|
||||
while (!q.isEmpty()) {
|
||||
// vertex with shortest distance (first iteration will return source)
|
||||
u = q.pollFirst();
|
||||
if (u.dist == Integer.MAX_VALUE)
|
||||
break; // we can ignore u (and any other remaining vertices) since they are unreachable
|
||||
|
||||
// look at distances to each neighbour
|
||||
for (Map.Entry<Vertex, Integer> a : u.neighbours.entrySet()) {
|
||||
v = a.getKey(); // the neighbour in this iteration
|
||||
|
||||
final int alternateDist = u.dist + a.getValue();
|
||||
if (alternateDist < v.dist) { // shorter path to neighbour found
|
||||
q.remove(v);
|
||||
v.dist = alternateDist;
|
||||
v.previous = u;
|
||||
q.add(v);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Prints a path from the source to the specified vertex
|
||||
*/
|
||||
public void printPath(String endName) {
|
||||
if (!graph.containsKey(endName)) {
|
||||
System.err.printf("Graph doesn't contain end vertex \"%s\"%n", endName);
|
||||
return;
|
||||
}
|
||||
|
||||
graph.get(endName).printPath();
|
||||
System.out.println();
|
||||
}
|
||||
|
||||
/**
|
||||
* Prints the path from the source to every vertex (output order is not guaranteed)
|
||||
*/
|
||||
public void printAllPaths() {
|
||||
for (Vertex v : graph.values()) {
|
||||
v.printPath();
|
||||
System.out.println();
|
||||
}
|
||||
}
|
||||
|
||||
}
|
@ -50,7 +50,8 @@ public class TopKWords {
|
||||
} finally {
|
||||
try {
|
||||
// you always have to close the I/O streams
|
||||
fis.close();
|
||||
if (fis != null)
|
||||
fis.close();
|
||||
} catch (IOException e) {
|
||||
e.printStackTrace();
|
||||
}
|
||||
|
@ -12,7 +12,7 @@ class TowerOfHanoi {
|
||||
|
||||
// Shift function is called in recursion for swapping the n-1 disc from the startPole to the intermediatePole
|
||||
shift(n - 1, startPole, endPole, intermediatePole);
|
||||
System.out.println("\nMove \"" + n + "\" from " + startPole + " --> " + endPole); // Result Printing
|
||||
System.out.println("%nMove \"" + n + "\" from " + startPole + " --> " + endPole); // Result Printing
|
||||
// Shift function is called in recursion for swapping the n-1 disc from the intermediatePole to the endPole
|
||||
shift(n - 1, intermediatePole, startPole, endPole);
|
||||
}
|
||||
|
Reference in New Issue
Block a user