style: enable NeedBraces in checkstyle (#5227)

* enable style NeedBraces

* style: enable NeedBraces in checkstyle

---------

Co-authored-by: Samuel Facchinello <samuel.facchinello@piksel.com>
This commit is contained in:
Samuel Facchinello
2024-06-13 21:00:16 +02:00
committed by GitHub
parent 51fcc66345
commit 87b17e0571
68 changed files with 629 additions and 261 deletions

View File

@ -20,7 +20,9 @@ public final class MillerRabinPrimalityCheck {
*/
public static boolean millerRabin(long n, int k) { // returns true if n is probably prime, else returns false.
if (n < 4) return n == 2 || n == 3;
if (n < 4) {
return n == 2 || n == 3;
}
int s = 0;
long d = n - 1;
@ -31,13 +33,17 @@ public final class MillerRabinPrimalityCheck {
Random rnd = new Random();
for (int i = 0; i < k; i++) {
long a = 2 + rnd.nextLong(n) % (n - 3);
if (checkComposite(n, a, d, s)) return false;
if (checkComposite(n, a, d, s)) {
return false;
}
}
return true;
}
public static boolean deterministicMillerRabin(long n) { // returns true if n is prime, else returns false.
if (n < 2) return false;
if (n < 2) {
return false;
}
int r = 0;
long d = n - 1;
@ -47,8 +53,12 @@ public final class MillerRabinPrimalityCheck {
}
for (int a : new int[] {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37}) {
if (n == a) return true;
if (checkComposite(n, a, d, r)) return false;
if (n == a) {
return true;
}
if (checkComposite(n, a, d, r)) {
return false;
}
}
return true;
}
@ -66,10 +76,14 @@ public final class MillerRabinPrimalityCheck {
*/
private static boolean checkComposite(long n, long a, long d, int s) {
long x = powerModP(a, d, n);
if (x == 1 || x == n - 1) return false;
if (x == 1 || x == n - 1) {
return false;
}
for (int r = 1; r < s; r++) {
x = powerModP(x, 2, n);
if (x == n - 1) return false;
if (x == n - 1) {
return false;
}
}
return true;
}
@ -79,11 +93,14 @@ public final class MillerRabinPrimalityCheck {
x = x % p; // Update x if it is more than or equal to p
if (x == 0) return 0; // In case x is divisible by p;
if (x == 0) {
return 0; // In case x is divisible by p;
}
while (y > 0) {
// If y is odd, multiply x with result
if ((y & 1) == 1) res = multiplyModP(res, x, p);
if ((y & 1) == 1) {
res = multiplyModP(res, x, p);
}
// y must be even now
y = y >> 1; // y = y/2