style: enable InvalidJavadocPosition in checkstyle (#5237)

enable style InvalidJavadocPosition

Co-authored-by: Samuel Facchinello <samuel.facchinello@piksel.com>
This commit is contained in:
Samuel Facchinello
2024-06-18 19:34:22 +02:00
committed by GitHub
parent 39e065437c
commit 74e51990c1
37 changed files with 284 additions and 358 deletions

View File

@ -1,15 +1,13 @@
package com.thealgorithms.maths;
import java.math.BigInteger;
/**
* Wikipedia link for Automorphic Number : https://en.wikipedia.org/wiki/Automorphic_number
* <a href="https://en.wikipedia.org/wiki/Automorphic_number">Automorphic Number</a>
* A number is said to be an Automorphic, if it is present in the last digit(s)
* of its square. Example- Let the number be 25, its square is 625. Since,
* 25(The input number) is present in the last two digits of its square(625), it
* is an Automorphic Number.
*/
import java.math.BigInteger;
public final class AutomorphicNumber {
private AutomorphicNumber() {
}

View File

@ -1,8 +1,7 @@
package com.thealgorithms.maths;
/**
* Author : Suraj Kumar Modi
* https://github.com/skmodi649
*/
/**
* @author <a href="https://github.com/skmodi649">Suraj Kumar Modi</a>
* You are given a number n. You need to find the digital root of n.
* DigitalRoot of a number is the recursive sum of its digits until we get a single digit number.
*
@ -20,8 +19,6 @@
* which is not a single digit number, hence
* sum of digit of 45 is 9 which is a single
* digit number.
*/
/**
* Algorithm :
* Step 1 : Define a method digitalRoot(int n)
* Step 2 : Define another method single(int n)
@ -38,8 +35,6 @@
* Step 5 : In main method simply take n as input and then call digitalRoot(int n) function and
* print the result
*/
package com.thealgorithms.maths;
final class DigitalRoot {
private DigitalRoot() {
}
@ -53,6 +48,11 @@ final class DigitalRoot {
}
}
/**
* Time Complexity: O((Number of Digits)^2) Auxiliary Space Complexity:
* O(Number of Digits) Constraints: 1 <= n <= 10^7
*/
// This function is used for finding the sum of the digits of number
public static int single(int n) {
if (n <= 9) { // if n becomes less than 10 than return n
@ -63,7 +63,3 @@ final class DigitalRoot {
} // n / 10 is the number obtained after removing the digit one by one
// The Sum of digits is stored in the Stack memory and then finally returned
}
/**
* Time Complexity: O((Number of Digits)^2) Auxiliary Space Complexity:
* O(Number of Digits) Constraints: 1 <= n <= 10^7
*/

View File

@ -1,18 +1,26 @@
/**
* Author : Siddhant Swarup Mallick
* Github : https://github.com/siddhant2002
*/
/** Program description - To find out the inverse square root of the given number*/
/** Wikipedia Link - https://en.wikipedia.org/wiki/Fast_inverse_square_root */
package com.thealgorithms.maths;
/**
* @author <a href="https://github.com/siddhant2002">Siddhant Swarup Mallick</a>
* Program description - To find out the inverse square root of the given number
* <a href="https://en.wikipedia.org/wiki/Fast_inverse_square_root">Wikipedia</a>
*/
public final class FastInverseSqrt {
private FastInverseSqrt() {
}
/**
* Returns the inverse square root of the given number upto 6 - 8 decimal places.
* calculates the inverse square root of the given number and returns true if calculated answer
* matches with given answer else returns false
*
* OUTPUT :
* Input - number = 4522
* Output: it calculates the inverse squareroot of a number and returns true with it matches the
* given answer else returns false. 1st approach Time Complexity : O(1) Auxiliary Space Complexity :
* O(1) Input - number = 4522 Output: it calculates the inverse squareroot of a number and returns
* true with it matches the given answer else returns false. 2nd approach Time Complexity : O(1)
* Auxiliary Space Complexity : O(1)
*/
public static boolean inverseSqrt(float number) {
float x = number;
float xhalf = 0.5f * x;
@ -24,11 +32,10 @@ public final class FastInverseSqrt {
}
/**
* Returns the inverse square root of the given number upto 6 - 8 decimal places.
* Returns the inverse square root of the given number upto 14 - 16 decimal places.
* calculates the inverse square root of the given number and returns true if calculated answer
* matches with given answer else returns false
*/
public static boolean inverseSqrt(double number) {
double x = number;
double xhalf = 0.5d * x;
@ -41,18 +48,4 @@ public final class FastInverseSqrt {
x *= number;
return x == 1 / Math.sqrt(number);
}
/**
* Returns the inverse square root of the given number upto 14 - 16 decimal places.
* calculates the inverse square root of the given number and returns true if calculated answer
* matches with given answer else returns false
*/
}
/**
* OUTPUT :
* Input - number = 4522
* Output: it calculates the inverse squareroot of a number and returns true with it matches the
* given answer else returns false. 1st approach Time Complexity : O(1) Auxiliary Space Complexity :
* O(1) Input - number = 4522 Output: it calculates the inverse squareroot of a number and returns
* true with it matches the given answer else returns false. 2nd approach Time Complexity : O(1)
* Auxiliary Space Complexity : O(1)
*/

View File

@ -1,12 +1,9 @@
/**
* Author : Siddhant Swarup Mallick
* Github : https://github.com/siddhant2002
*/
/** Program description - To find the FrizzyNumber*/
package com.thealgorithms.maths;
/**
* @author <a href="https://github.com/siddhant2002">Siddhant Swarup Mallick</a>
* Program description - To find the FrizzyNumber
*/
public final class FrizzyNumber {
private FrizzyNumber() {
}

View File

@ -5,9 +5,7 @@ package com.thealgorithms.maths;
* numbered from 1 to n in clockwise order. More formally, moving clockwise from the ith friend
* brings you to the (i+1)th friend for 1 <= i < n, and moving clockwise from the nth friend brings
* you to the 1st friend.
*/
/**
The rules of the game are as follows:
1.Start at the 1st friend.
@ -19,7 +17,6 @@ package com.thealgorithms.maths;
@author Kunal
*/
public final class JosephusProblem {
private JosephusProblem() {
}

View File

@ -37,17 +37,17 @@ public final class PascalTriangle {
*/
public static int[][] pascal(int n) {
/**
/*
* @param arr An auxiliary array to store generated pascal triangle values
* @return
*/
int[][] arr = new int[n][n];
/**
/*
* @param line Iterate through every line and print integer(s) in it
* @param i Represents the column number of the element we are currently on
*/
for (int line = 0; line < n; line++) {
/**
/*
* @Every line has number of integers equal to line number
*/
for (int i = 0; i <= line; i++) {