Add Monte Carlo's Integral Approximation (#6235)

This commit is contained in:
Muhammad Ezzat
2025-05-09 23:27:27 +03:00
committed by GitHub
parent c02074e191
commit 6fe630cdf2
2 changed files with 173 additions and 0 deletions

View File

@ -0,0 +1,82 @@
package com.thealgorithms.randomized;
import java.util.Random;
import java.util.function.Function;
/**
* A demonstration of the Monte Carlo integration algorithm in Java.
*
* <p>This class estimates the value of definite integrals using randomized sampling,
* also known as the Monte Carlo method. It is particularly effective for:
* <ul>
* <li>Functions that are difficult or impossible to integrate analytically</li>
* <li>High-dimensional integrals where traditional methods are inefficient</li>
* <li>Simulation and probabilistic analysis tasks</li>
* </ul>
*
* <p>The core idea is to sample random points uniformly from the integration domain,
* evaluate the function at those points, and compute the scaled average to estimate the integral.
*
* <p>For a one-dimensional integral over [a, b], the approximation is the function range (b-a),
* multiplied by the function average result for a random sample.
* See more: <a href="https://en.wikipedia.org/wiki/Monte_Carlo_integration">Monte Carlo Integration</a>
*
* @author: MuhammadEzzatHBK
*/
public final class MonteCarloIntegration {
private MonteCarloIntegration() {
}
/**
* Approximates the definite integral of a given function over a specified
* interval using the Monte Carlo method with a fixed random seed for
* reproducibility.
*
* @param fx the function to integrate
* @param a the lower bound of the interval
* @param b the upper bound of the interval
* @param n the number of random samples to use
* @param seed the seed for the random number generator
* @return the approximate value of the integral
*/
public static double approximate(Function<Double, Double> fx, double a, double b, int n, long seed) {
return doApproximate(fx, a, b, n, new Random(seed));
}
/**
* Approximates the definite integral of a given function over a specified
* interval using the Monte Carlo method with a random seed based on the
* current system time for more randomness.
*
* @param fx the function to integrate
* @param a the lower bound of the interval
* @param b the upper bound of the interval
* @param n the number of random samples to use
* @return the approximate value of the integral
*/
public static double approximate(Function<Double, Double> fx, double a, double b, int n) {
return doApproximate(fx, a, b, n, new Random(System.currentTimeMillis()));
}
private static double doApproximate(Function<Double, Double> fx, double a, double b, int n, Random generator) {
if (!validate(fx, a, b, n)) {
throw new IllegalArgumentException("Invalid input parameters");
}
double totalArea = 0.0;
double interval = b - a;
for (int i = 0; i < n; i++) {
double x = a + generator.nextDouble() * interval;
totalArea += fx.apply(x);
}
return interval * totalArea / n;
}
private static boolean validate(Function<Double, Double> fx, double a, double b, int n) {
boolean isFunctionValid = fx != null;
boolean isIntervalValid = a < b;
boolean isSampleSizeValid = n > 0;
return isFunctionValid && isIntervalValid && isSampleSizeValid;
}
}

View File

@ -0,0 +1,91 @@
package com.thealgorithms.randomized;
import static com.thealgorithms.randomized.MonteCarloIntegration.approximate;
import static org.junit.jupiter.api.Assertions.assertEquals;
import static org.junit.jupiter.api.Assertions.assertNotNull;
import static org.junit.jupiter.api.Assertions.assertThrows;
import java.util.function.Function;
import org.junit.jupiter.api.Test;
class MonteCarloIntegrationTest {
private static final double EPSILON = 0.03; // Allow 3% error margin
@Test
void testConstantFunction() {
// Integral of f(x) = 2 from 0 to 1 is 2
Function<Double, Double> constant = x -> 2.0;
double result = approximate(constant, 0, 1, 10000);
assertEquals(2.0, result, EPSILON);
}
@Test
void testLinearFunction() {
// Integral of f(x) = x from 0 to 1 is 0.5
Function<Double, Double> linear = Function.identity();
double result = approximate(linear, 0, 1, 10000);
assertEquals(0.5, result, EPSILON);
}
@Test
void testQuadraticFunction() {
// Integral of f(x) = x^2 from 0 to 1 is 1/3
Function<Double, Double> quadratic = x -> x * x;
double result = approximate(quadratic, 0, 1, 10000);
assertEquals(1.0 / 3.0, result, EPSILON);
}
@Test
void testLargeSampleSize() {
// Integral of f(x) = x^2 from 0 to 1 is 1/3
Function<Double, Double> quadratic = x -> x * x;
double result = approximate(quadratic, 0, 1, 50000000);
assertEquals(1.0 / 3.0, result, EPSILON / 2); // Larger sample size, smaller error margin
}
@Test
void testReproducibility() {
Function<Double, Double> linear = Function.identity();
double result1 = approximate(linear, 0, 1, 10000, 42L);
double result2 = approximate(linear, 0, 1, 10000, 42L);
assertEquals(result1, result2, 0.0); // Exactly equal
}
@Test
void testNegativeInterval() {
// Integral of f(x) = x from -1 to 1 is 0
Function<Double, Double> linear = Function.identity();
double result = approximate(linear, -1, 1, 10000);
assertEquals(0.0, result, EPSILON);
}
@Test
void testNullFunction() {
Exception exception = assertThrows(IllegalArgumentException.class, () -> approximate(null, 0, 1, 1000));
assertNotNull(exception);
}
@Test
void testInvalidInterval() {
Function<Double, Double> linear = Function.identity();
Exception exception = assertThrows(IllegalArgumentException.class, () -> {
approximate(linear, 2, 1, 1000); // b <= a
});
assertNotNull(exception);
}
@Test
void testZeroSampleSize() {
Function<Double, Double> linear = Function.identity();
Exception exception = assertThrows(IllegalArgumentException.class, () -> approximate(linear, 0, 1, 0));
assertNotNull(exception);
}
@Test
void testNegativeSampleSize() {
Function<Double, Double> linear = Function.identity();
Exception exception = assertThrows(IllegalArgumentException.class, () -> approximate(linear, 0, 1, -100));
assertNotNull(exception);
}
}