Shortest coprime segment using sliding window technique (#6296)

* Shortest coprime segment using sliding window technique

* mvn checkstyle passes

* gcd function reformatted

* fixed typo in ShortestCoprimeSegment

* 1. shortestCoprimeSegment now returns not the length, but the shortest segment itself.
2. Testcases have been adapted, a few new ones added.

* clang formatted ShortestCoprimeSegmentTest.java code
This commit is contained in:
02RdDT
2025-06-18 22:29:35 +03:00
committed by GitHub
parent a21abe6b2b
commit 616d15a408
2 changed files with 200 additions and 0 deletions

View File

@ -0,0 +1,135 @@
package com.thealgorithms.slidingwindow;
import java.util.Arrays;
import java.util.LinkedList;
/**
* The Sliding Window technique together with 2-stack technique is used to find coprime segment of minimal size in an array.
* Segment a[i],...,a[i+l] is coprime if gcd(a[i], a[i+1], ..., a[i+l]) = 1
* <p>
* Run-time complexity: O(n log n)
* What is special about this 2-stack technique is that it enables us to remove element a[i] and find gcd(a[i+1],...,a[i+l]) in amortized O(1) time.
* For 'remove' worst-case would be O(n) operation, but this happens rarely.
* Main observation is that each element gets processed a constant amount of times, hence complexity will be:
* O(n log n), where log n comes from complexity of gcd.
* <p>
* More generally, the 2-stack technique enables us to 'remove' an element fast if it is known how to 'add' an element fast to the set.
* In our case 'adding' is calculating d' = gcd(a[i],...,a[i+l+1]), when d = gcd(a[i],...a[i]) with d' = gcd(d, a[i+l+1]).
* and removing is find gcd(a[i+1],...,a[i+l]). We don't calculate it explicitly, but it is pushed in the stack which we can pop in O(1).
* <p>
* One can change methods 'legalSegment' and function 'f' in DoubleStack to adapt this code to other sliding-window type problems.
* I recommend this article for more explanations: "<a href="https://codeforces.com/edu/course/2/lesson/9/2">CF Article</a>">Article 1</a> or <a href="https://usaco.guide/gold/sliding-window?lang=cpp#method-2---two-stacks">USACO Article</a>
* <p>
* Another method to solve this problem is through segment trees. Then query operation would have O(log n), not O(1) time, but runtime complexity would still be O(n log n)
*
* @author DomTr (<a href="https://github.com/DomTr">Github</a>)
*/
public final class ShortestCoprimeSegment {
// Prevent instantiation
private ShortestCoprimeSegment() {
}
/**
* @param arr is the input array
* @return shortest segment in the array which has gcd equal to 1. If no such segment exists or array is empty, returns empty array
*/
public static long[] shortestCoprimeSegment(long[] arr) {
if (arr == null || arr.length == 0) {
return new long[] {};
}
DoubleStack front = new DoubleStack();
DoubleStack back = new DoubleStack();
int n = arr.length;
int l = 0;
int shortestLength = n + 1;
int beginsAt = -1; // beginning index of the shortest coprime segment
for (int i = 0; i < n; i++) {
back.push(arr[i]);
while (legalSegment(front, back)) {
remove(front, back);
if (shortestLength > i - l + 1) {
beginsAt = l;
shortestLength = i - l + 1;
}
l++;
}
}
if (shortestLength > n) {
shortestLength = -1;
}
if (shortestLength == -1) {
return new long[] {};
}
return Arrays.copyOfRange(arr, beginsAt, beginsAt + shortestLength);
}
private static boolean legalSegment(DoubleStack front, DoubleStack back) {
return gcd(front.top(), back.top()) == 1;
}
private static long gcd(long a, long b) {
if (a < b) {
return gcd(b, a);
} else if (b == 0) {
return a;
} else {
return gcd(a % b, b);
}
}
/**
* This solves the problem of removing elements quickly.
* Even though the worst case of 'remove' method is O(n), it is a very pessimistic view.
* We will need to empty out 'back', only when 'from' is empty.
* Consider element x when it is added to stack 'back'.
* After some time 'front' becomes empty and x goes to 'front'. Notice that in the for-loop we proceed further and x will never come back to any stacks 'back' or 'front'.
* In other words, every element gets processed by a constant number of operations.
* So 'remove' amortized runtime is actually O(n).
*/
private static void remove(DoubleStack front, DoubleStack back) {
if (front.isEmpty()) {
while (!back.isEmpty()) {
front.push(back.pop());
}
}
front.pop();
}
/**
* DoubleStack serves as a collection of two stacks. One is a normal stack called 'stack', the other 'values' stores gcd-s up until some index.
*/
private static class DoubleStack {
LinkedList<Long> stack;
LinkedList<Long> values;
DoubleStack() {
values = new LinkedList<>();
stack = new LinkedList<>();
values.add(0L); // Initialise with 0 which is neutral element in terms of gcd, i.e. gcd(a,0) = a
}
long f(long a, long b) { // Can be replaced with other function
return gcd(a, b);
}
public void push(long x) {
stack.addLast(x);
values.addLast(f(values.getLast(), x));
}
public long top() {
return values.getLast();
}
public long pop() {
long res = stack.getLast();
stack.removeLast();
values.removeLast();
return res;
}
public boolean isEmpty() {
return stack.isEmpty();
}
}
}

View File

@ -0,0 +1,65 @@
package com.thealgorithms.slidingwindow;
import static org.junit.jupiter.api.Assertions.assertArrayEquals;
import java.util.Arrays;
import org.junit.jupiter.api.Test;
/**
* Unit tests for ShortestCoprimeSegment algorithm
*
* @author DomTr (<a href="https://github.com/DomTr">...</a>)
*/
public class ShortestCoprimeSegmentTest {
@Test
public void testShortestCoprimeSegment() {
assertArrayEquals(new long[] {4, 6, 9}, ShortestCoprimeSegment.shortestCoprimeSegment(new long[] {4, 6, 9, 3, 6}));
assertArrayEquals(new long[] {4, 5}, ShortestCoprimeSegment.shortestCoprimeSegment(new long[] {4, 5, 9, 3, 6}));
assertArrayEquals(new long[] {3, 2}, ShortestCoprimeSegment.shortestCoprimeSegment(new long[] {3, 2}));
assertArrayEquals(new long[] {9, 10}, ShortestCoprimeSegment.shortestCoprimeSegment(new long[] {3, 9, 9, 9, 10}));
long[] test5 = new long[] {3 * 11, 11 * 7, 11 * 7 * 3, 11 * 7 * 3 * 5, 11 * 7 * 3 * 5 * 13, 7 * 13, 11 * 7 * 3 * 5 * 13};
long[] answer5 = Arrays.copyOfRange(test5, 0, test5.length - 1);
assertArrayEquals(answer5, ShortestCoprimeSegment.shortestCoprimeSegment(test5));
// Test suite, when the entire array needs to be taken
long[] test6 = new long[] {3 * 7, 7 * 5, 5 * 7 * 3, 3 * 5};
assertArrayEquals(test6, ShortestCoprimeSegment.shortestCoprimeSegment(test6));
long[] test7 = new long[] {3 * 11, 11 * 7, 11 * 7 * 3, 3 * 7};
assertArrayEquals(test7, ShortestCoprimeSegment.shortestCoprimeSegment(test7));
long[] test8 = new long[] {3 * 11, 11 * 7, 11 * 7 * 3, 11 * 7 * 3 * 5, 5 * 7};
assertArrayEquals(test8, ShortestCoprimeSegment.shortestCoprimeSegment(test8));
long[] test9 = new long[] {3 * 11, 11 * 7, 11 * 7 * 3, 11 * 7 * 3 * 5, 11 * 7 * 3 * 5 * 13, 7 * 13};
assertArrayEquals(test9, ShortestCoprimeSegment.shortestCoprimeSegment(test9));
long[] test10 = new long[] {3 * 11, 7 * 11, 3 * 7 * 11, 3 * 5 * 7 * 11, 3 * 5 * 7 * 11 * 13, 2 * 3 * 5 * 7 * 11 * 13, 2 * 3 * 5 * 7 * 11 * 13 * 17, 2 * 3 * 5 * 7 * 11 * 13 * 17 * 19, 2 * 3 * 5 * 7 * 11 * 13 * 17 * 19 * 23, 7 * 13};
assertArrayEquals(test10, ShortestCoprimeSegment.shortestCoprimeSegment(test10));
// Segment can consist of one element
long[] test11 = new long[] {1};
assertArrayEquals(test11, ShortestCoprimeSegment.shortestCoprimeSegment(new long[] {4, 6, 1, 3, 6}));
long[] test12 = new long[] {1};
assertArrayEquals(test12, ShortestCoprimeSegment.shortestCoprimeSegment(new long[] {1}));
}
@Test
public void testShortestCoprimeSegment2() {
assertArrayEquals(new long[] {2 * 3, 2 * 3 * 5, 2 * 3 * 5 * 7, 5 * 7}, ShortestCoprimeSegment.shortestCoprimeSegment(new long[] {2 * 3, 2 * 3 * 5, 2 * 3 * 5 * 7, 5 * 7, 2 * 3 * 5 * 7}));
assertArrayEquals(new long[] {5 * 7, 2}, ShortestCoprimeSegment.shortestCoprimeSegment(new long[] {2 * 3, 2 * 3 * 5, 2 * 3 * 5 * 7, 5 * 7, 2}));
assertArrayEquals(new long[] {5 * 7, 2 * 5 * 7, 2 * 11}, ShortestCoprimeSegment.shortestCoprimeSegment(new long[] {2 * 3, 2 * 3 * 5, 2 * 3 * 5 * 7, 5 * 7, 2 * 5 * 7, 2 * 11}));
assertArrayEquals(new long[] {3 * 5 * 7, 2 * 3, 2}, ShortestCoprimeSegment.shortestCoprimeSegment(new long[] {2, 2 * 3, 2 * 3 * 5, 3 * 5 * 7, 2 * 3, 2}));
}
@Test
public void testNoCoprimeSegment() {
// There may not be a coprime segment
long[] empty = new long[] {};
assertArrayEquals(empty, ShortestCoprimeSegment.shortestCoprimeSegment(null));
assertArrayEquals(empty, ShortestCoprimeSegment.shortestCoprimeSegment(empty));
assertArrayEquals(empty, ShortestCoprimeSegment.shortestCoprimeSegment(new long[] {4, 6, 8, 12, 8}));
assertArrayEquals(empty, ShortestCoprimeSegment.shortestCoprimeSegment(new long[] {4, 4, 4, 4, 10, 4, 6, 8, 12, 8}));
assertArrayEquals(empty, ShortestCoprimeSegment.shortestCoprimeSegment(new long[] {100}));
assertArrayEquals(empty, ShortestCoprimeSegment.shortestCoprimeSegment(new long[] {2, 2, 2}));
}
}