mirror of
https://github.com/TheAlgorithms/Java.git
synced 2025-07-05 16:27:33 +08:00
Shortest coprime segment using sliding window technique (#6296)
* Shortest coprime segment using sliding window technique * mvn checkstyle passes * gcd function reformatted * fixed typo in ShortestCoprimeSegment * 1. shortestCoprimeSegment now returns not the length, but the shortest segment itself. 2. Testcases have been adapted, a few new ones added. * clang formatted ShortestCoprimeSegmentTest.java code
This commit is contained in:
@ -0,0 +1,135 @@
|
||||
package com.thealgorithms.slidingwindow;
|
||||
|
||||
import java.util.Arrays;
|
||||
import java.util.LinkedList;
|
||||
|
||||
/**
|
||||
* The Sliding Window technique together with 2-stack technique is used to find coprime segment of minimal size in an array.
|
||||
* Segment a[i],...,a[i+l] is coprime if gcd(a[i], a[i+1], ..., a[i+l]) = 1
|
||||
* <p>
|
||||
* Run-time complexity: O(n log n)
|
||||
* What is special about this 2-stack technique is that it enables us to remove element a[i] and find gcd(a[i+1],...,a[i+l]) in amortized O(1) time.
|
||||
* For 'remove' worst-case would be O(n) operation, but this happens rarely.
|
||||
* Main observation is that each element gets processed a constant amount of times, hence complexity will be:
|
||||
* O(n log n), where log n comes from complexity of gcd.
|
||||
* <p>
|
||||
* More generally, the 2-stack technique enables us to 'remove' an element fast if it is known how to 'add' an element fast to the set.
|
||||
* In our case 'adding' is calculating d' = gcd(a[i],...,a[i+l+1]), when d = gcd(a[i],...a[i]) with d' = gcd(d, a[i+l+1]).
|
||||
* and removing is find gcd(a[i+1],...,a[i+l]). We don't calculate it explicitly, but it is pushed in the stack which we can pop in O(1).
|
||||
* <p>
|
||||
* One can change methods 'legalSegment' and function 'f' in DoubleStack to adapt this code to other sliding-window type problems.
|
||||
* I recommend this article for more explanations: "<a href="https://codeforces.com/edu/course/2/lesson/9/2">CF Article</a>">Article 1</a> or <a href="https://usaco.guide/gold/sliding-window?lang=cpp#method-2---two-stacks">USACO Article</a>
|
||||
* <p>
|
||||
* Another method to solve this problem is through segment trees. Then query operation would have O(log n), not O(1) time, but runtime complexity would still be O(n log n)
|
||||
*
|
||||
* @author DomTr (<a href="https://github.com/DomTr">Github</a>)
|
||||
*/
|
||||
public final class ShortestCoprimeSegment {
|
||||
// Prevent instantiation
|
||||
private ShortestCoprimeSegment() {
|
||||
}
|
||||
|
||||
/**
|
||||
* @param arr is the input array
|
||||
* @return shortest segment in the array which has gcd equal to 1. If no such segment exists or array is empty, returns empty array
|
||||
*/
|
||||
public static long[] shortestCoprimeSegment(long[] arr) {
|
||||
if (arr == null || arr.length == 0) {
|
||||
return new long[] {};
|
||||
}
|
||||
DoubleStack front = new DoubleStack();
|
||||
DoubleStack back = new DoubleStack();
|
||||
int n = arr.length;
|
||||
int l = 0;
|
||||
int shortestLength = n + 1;
|
||||
int beginsAt = -1; // beginning index of the shortest coprime segment
|
||||
for (int i = 0; i < n; i++) {
|
||||
back.push(arr[i]);
|
||||
while (legalSegment(front, back)) {
|
||||
remove(front, back);
|
||||
if (shortestLength > i - l + 1) {
|
||||
beginsAt = l;
|
||||
shortestLength = i - l + 1;
|
||||
}
|
||||
l++;
|
||||
}
|
||||
}
|
||||
if (shortestLength > n) {
|
||||
shortestLength = -1;
|
||||
}
|
||||
if (shortestLength == -1) {
|
||||
return new long[] {};
|
||||
}
|
||||
return Arrays.copyOfRange(arr, beginsAt, beginsAt + shortestLength);
|
||||
}
|
||||
|
||||
private static boolean legalSegment(DoubleStack front, DoubleStack back) {
|
||||
return gcd(front.top(), back.top()) == 1;
|
||||
}
|
||||
|
||||
private static long gcd(long a, long b) {
|
||||
if (a < b) {
|
||||
return gcd(b, a);
|
||||
} else if (b == 0) {
|
||||
return a;
|
||||
} else {
|
||||
return gcd(a % b, b);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* This solves the problem of removing elements quickly.
|
||||
* Even though the worst case of 'remove' method is O(n), it is a very pessimistic view.
|
||||
* We will need to empty out 'back', only when 'from' is empty.
|
||||
* Consider element x when it is added to stack 'back'.
|
||||
* After some time 'front' becomes empty and x goes to 'front'. Notice that in the for-loop we proceed further and x will never come back to any stacks 'back' or 'front'.
|
||||
* In other words, every element gets processed by a constant number of operations.
|
||||
* So 'remove' amortized runtime is actually O(n).
|
||||
*/
|
||||
private static void remove(DoubleStack front, DoubleStack back) {
|
||||
if (front.isEmpty()) {
|
||||
while (!back.isEmpty()) {
|
||||
front.push(back.pop());
|
||||
}
|
||||
}
|
||||
front.pop();
|
||||
}
|
||||
|
||||
/**
|
||||
* DoubleStack serves as a collection of two stacks. One is a normal stack called 'stack', the other 'values' stores gcd-s up until some index.
|
||||
*/
|
||||
private static class DoubleStack {
|
||||
LinkedList<Long> stack;
|
||||
LinkedList<Long> values;
|
||||
|
||||
DoubleStack() {
|
||||
values = new LinkedList<>();
|
||||
stack = new LinkedList<>();
|
||||
values.add(0L); // Initialise with 0 which is neutral element in terms of gcd, i.e. gcd(a,0) = a
|
||||
}
|
||||
|
||||
long f(long a, long b) { // Can be replaced with other function
|
||||
return gcd(a, b);
|
||||
}
|
||||
|
||||
public void push(long x) {
|
||||
stack.addLast(x);
|
||||
values.addLast(f(values.getLast(), x));
|
||||
}
|
||||
|
||||
public long top() {
|
||||
return values.getLast();
|
||||
}
|
||||
|
||||
public long pop() {
|
||||
long res = stack.getLast();
|
||||
stack.removeLast();
|
||||
values.removeLast();
|
||||
return res;
|
||||
}
|
||||
|
||||
public boolean isEmpty() {
|
||||
return stack.isEmpty();
|
||||
}
|
||||
}
|
||||
}
|
Reference in New Issue
Block a user