mirror of
https://github.com/TheAlgorithms/Java.git
synced 2025-07-08 18:32:56 +08:00
Refactor LowestBasePalindrome (#4207)
This commit is contained in:
@ -1,153 +1,93 @@
|
||||
package com.thealgorithms.others;
|
||||
|
||||
import java.util.InputMismatchException;
|
||||
import java.util.Scanner;
|
||||
import java.util.ArrayList;
|
||||
|
||||
/**
|
||||
* Class for finding the lowest base in which a given integer is a palindrome.
|
||||
* Includes auxiliary methods for converting between bases and reversing
|
||||
* strings.
|
||||
*
|
||||
* <p>
|
||||
* NOTE: There is potential for error, see note at line 63.
|
||||
*
|
||||
* @author RollandMichael
|
||||
* @version 2017.09.28
|
||||
* @brief Class for finding the lowest base in which a given integer is a palindrome.
|
||||
cf. https://oeis.org/A016026
|
||||
*/
|
||||
public class LowestBasePalindrome {
|
||||
final public class LowestBasePalindrome {
|
||||
private LowestBasePalindrome() {
|
||||
}
|
||||
|
||||
public static void main(String[] args) {
|
||||
Scanner in = new Scanner(System.in);
|
||||
int n = 0;
|
||||
while (true) {
|
||||
try {
|
||||
System.out.print("Enter number: ");
|
||||
n = in.nextInt();
|
||||
break;
|
||||
} catch (InputMismatchException e) {
|
||||
System.out.println("Invalid input!");
|
||||
in.next();
|
||||
}
|
||||
private static void checkBase(int base) {
|
||||
if (base <= 1) {
|
||||
throw new IllegalArgumentException("base must be greater than 1.");
|
||||
}
|
||||
}
|
||||
|
||||
private static void checkNumber(int number) {
|
||||
if (number < 0) {
|
||||
throw new IllegalArgumentException("number must be nonnegative.");
|
||||
}
|
||||
System.out.println(
|
||||
n + " is a palindrome in base " + lowestBasePalindrome(n)
|
||||
);
|
||||
System.out.println(
|
||||
base2base(Integer.toString(n), 10, lowestBasePalindrome(n))
|
||||
);
|
||||
in.close();
|
||||
}
|
||||
|
||||
/**
|
||||
* Given a number in base 10, returns the lowest base in which the number is
|
||||
* represented by a palindrome (read the same left-to-right and
|
||||
* right-to-left).
|
||||
*
|
||||
* @param num A number in base 10.
|
||||
* @return The lowest base in which num is a palindrome.
|
||||
* @brief computes the representation of the input number in given base
|
||||
* @param number the input number
|
||||
* @param base the given base
|
||||
* @exception IllegalArgumentException number is negative or base is less than 2
|
||||
* @return the list containing the digits of the input number in the given base, the most significant digit is at the end of the array
|
||||
*/
|
||||
public static int lowestBasePalindrome(int num) {
|
||||
int base, num2 = num;
|
||||
int digit;
|
||||
char digitC;
|
||||
boolean foundBase = false;
|
||||
String newNum = "";
|
||||
String digits = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ";
|
||||
|
||||
while (!foundBase) {
|
||||
// Try from bases 2 to num-1
|
||||
for (base = 2; base < num2; base++) {
|
||||
newNum = "";
|
||||
while (num > 0) {
|
||||
// Obtain the first digit of n in the current base,
|
||||
// which is equivalent to the integer remainder of (n/base).
|
||||
// The next digit is obtained by dividing n by the base and
|
||||
// continuing the process of getting the remainder. This is done
|
||||
// until n is <=0 and the number in the new base is obtained.
|
||||
digit = (num % base);
|
||||
num /= base;
|
||||
// If the digit isn't in the set of [0-9][A-Z] (beyond base 36), its character
|
||||
// form is just its value in ASCII.
|
||||
|
||||
// NOTE: This may cause problems, as the capital letters are ASCII values
|
||||
// 65-90. It may cause false positives when one digit is, for instance 10 and assigned
|
||||
// 'A' from the character array and the other is 65 and also assigned 'A'.
|
||||
// Regardless, the character is added to the representation of n
|
||||
// in the current base.
|
||||
if (digit >= digits.length()) {
|
||||
digitC = (char) (digit);
|
||||
newNum += digitC;
|
||||
continue;
|
||||
}
|
||||
newNum += digits.charAt(digit);
|
||||
}
|
||||
// Num is assigned back its original value for the next iteration.
|
||||
num = num2;
|
||||
// Auxiliary method reverses the number.
|
||||
String reverse = reverse(newNum);
|
||||
// If the number is read the same as its reverse, then it is a palindrome.
|
||||
// The current base is returned.
|
||||
if (reverse.equals(newNum)) {
|
||||
foundBase = true;
|
||||
return base;
|
||||
}
|
||||
}
|
||||
public static ArrayList<Integer> computeDigitsInBase(int number, int base) {
|
||||
checkNumber(number);
|
||||
checkBase(base);
|
||||
var result = new ArrayList<Integer>();
|
||||
while (number > 0) {
|
||||
result.add(number % base);
|
||||
number /= base;
|
||||
}
|
||||
// If all else fails, n is always a palindrome in base n-1. ("11")
|
||||
return num - 1;
|
||||
return result;
|
||||
}
|
||||
|
||||
private static String reverse(String str) {
|
||||
String reverse = "";
|
||||
for (int i = str.length() - 1; i >= 0; i--) {
|
||||
reverse += str.charAt(i);
|
||||
/**
|
||||
* @brief checks if the input array is a palindrome
|
||||
* @brief list the input array
|
||||
* @return true, if the input array is a palindrome, false otherwise
|
||||
*/
|
||||
public static boolean isPalindromic(ArrayList<Integer> list) {
|
||||
for (int pos = 0; pos < list.size()/2; ++pos) {
|
||||
if(list.get(pos) != list.get(list.size()-1-pos)) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
return reverse;
|
||||
return true;
|
||||
}
|
||||
|
||||
private static String base2base(String n, int b1, int b2) {
|
||||
// Declare variables: decimal value of n,
|
||||
// character of base b1, character of base b2,
|
||||
// and the string that will be returned.
|
||||
int decimalValue = 0, charB2;
|
||||
char charB1;
|
||||
String output = "";
|
||||
// Go through every character of n
|
||||
for (int i = 0; i < n.length(); i++) {
|
||||
// store the character in charB1
|
||||
charB1 = n.charAt(i);
|
||||
// if it is a non-number, convert it to a decimal value >9 and store it in charB2
|
||||
if (charB1 >= 'A' && charB1 <= 'Z') {
|
||||
charB2 = 10 + (charB1 - 'A');
|
||||
} // Else, store the integer value in charB2
|
||||
else {
|
||||
charB2 = charB1 - '0';
|
||||
}
|
||||
// Convert the digit to decimal and add it to the
|
||||
// decimalValue of n
|
||||
decimalValue = decimalValue * b1 + charB2;
|
||||
/**
|
||||
* @brief checks if representation of the input number in given base is a palindrome
|
||||
* @param number the input number
|
||||
* @param base the given base
|
||||
* @exception IllegalArgumentException number is negative or base is less than 2
|
||||
* @return true, if the input number represented in the given base is a palindrome, false otherwise
|
||||
*/
|
||||
public static boolean isPalindromicInBase(int number, int base) {
|
||||
checkNumber(number);
|
||||
checkBase(base);
|
||||
|
||||
if (number <= 1) {
|
||||
return true;
|
||||
}
|
||||
|
||||
// Converting the decimal value to base b2:
|
||||
// A number is converted from decimal to another base
|
||||
// by continuously dividing by the base and recording
|
||||
// the remainder until the quotient is zero. The number in the
|
||||
// new base is the remainders, with the last remainder
|
||||
// being the left-most digit.
|
||||
// While the quotient is NOT zero:
|
||||
while (decimalValue != 0) {
|
||||
// If the remainder is a digit < 10, simply add it to
|
||||
// the left side of the new number.
|
||||
if (decimalValue % b2 < 10) {
|
||||
output = decimalValue % b2 + output;
|
||||
} // If the remainder is >= 10, add a character with the
|
||||
// corresponding value to the new number. (A = 10, B = 11, C = 12, ...)
|
||||
else {
|
||||
output = (char) ((decimalValue % b2) + 55) + output;
|
||||
}
|
||||
// Divide by the new base again
|
||||
decimalValue /= b2;
|
||||
if (number % base == 0) {
|
||||
// the last digit of number written in base is 0
|
||||
return false;
|
||||
}
|
||||
return output;
|
||||
|
||||
return isPalindromic(computeDigitsInBase(number, base));
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief finds the smallest base for which the representation of the input number is a palindrome
|
||||
* @param number the input number
|
||||
* @exception IllegalArgumentException number is negative
|
||||
* @return the smallest base for which the representation of the input number is a palindrome
|
||||
*/
|
||||
public static int lowestBasePalindrome(int number) {
|
||||
int base = 2;
|
||||
while(!isPalindromicInBase(number, base)) {
|
||||
++base;
|
||||
}
|
||||
return base;
|
||||
}
|
||||
}
|
||||
|
Reference in New Issue
Block a user