mirror of
https://github.com/TheAlgorithms/Java.git
synced 2025-07-06 09:06:51 +08:00
@ -175,31 +175,17 @@ public class FFT {
|
||||
* https://www.geeksforgeeks.org/iterative-fast-fourier-transformation-polynomial-multiplication/
|
||||
* https://en.wikipedia.org/wiki/Cooley%E2%80%93Tukey_FFT_algorithm
|
||||
* https://cp-algorithms.com/algebra/fft.html
|
||||
*
|
||||
* @param x The discrete signal which is then converted to the FFT or the
|
||||
* @param x The discrete signal which is then converted to the FFT or the
|
||||
* IFFT of signal x.
|
||||
* @param inverse True if you want to find the inverse FFT.
|
||||
* @return
|
||||
*/
|
||||
public static void fft(ArrayList<Complex> x, boolean inverse) {
|
||||
public static ArrayList<Complex> fft(ArrayList<Complex> x, boolean inverse) {
|
||||
/* Pad the signal with zeros if necessary */
|
||||
paddingPowerOfTwo(x);
|
||||
int N = x.size();
|
||||
|
||||
/* Find the log2(N) */
|
||||
int log2N = 0;
|
||||
while ((1 << log2N) < N) {
|
||||
log2N++;
|
||||
}
|
||||
|
||||
/* Swap the values of the signal with bit-reversal method */
|
||||
int reverse;
|
||||
for (int i = 0; i < N; i++) {
|
||||
reverse = reverseBits(i, log2N);
|
||||
if (i < reverse) {
|
||||
Collections.swap(x, i, reverse);
|
||||
}
|
||||
}
|
||||
|
||||
int log2N = findLog2(N);
|
||||
x = fftBitReversal(N,log2N,x);
|
||||
int direction = inverse ? -1 : 1;
|
||||
|
||||
/* Main loop of the algorithm */
|
||||
@ -217,14 +203,40 @@ public class FFT {
|
||||
}
|
||||
}
|
||||
}
|
||||
x = inverseFFT(N,inverse,x);
|
||||
return x;
|
||||
}
|
||||
|
||||
/* Divide by N if we want the inverse FFT */
|
||||
/* Find the log2(N) */
|
||||
public static int findLog2(int N){
|
||||
int log2N = 0;
|
||||
while ((1 << log2N) < N) {
|
||||
log2N++;
|
||||
}
|
||||
return log2N;
|
||||
}
|
||||
|
||||
/* Swap the values of the signal with bit-reversal method */
|
||||
public static ArrayList<Complex> fftBitReversal(int N, int log2N, ArrayList<Complex> x){
|
||||
int reverse;
|
||||
for (int i = 0; i < N; i++) {
|
||||
reverse = reverseBits(i, log2N);
|
||||
if (i < reverse) {
|
||||
Collections.swap(x, i, reverse);
|
||||
}
|
||||
}
|
||||
return x;
|
||||
}
|
||||
|
||||
/* Divide by N if we want the inverse FFT */
|
||||
public static ArrayList<Complex> inverseFFT(int N, boolean inverse, ArrayList<Complex> x ){
|
||||
if (inverse) {
|
||||
for (int i = 0; i < x.size(); i++) {
|
||||
Complex z = x.get(i);
|
||||
x.set(i, z.divide(N));
|
||||
}
|
||||
}
|
||||
return x;
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -38,7 +38,7 @@ public class Gaussian {
|
||||
return mat;
|
||||
}
|
||||
|
||||
// calcilate the x_1, x_2,... values of the gaussian and save it in an arraylist.
|
||||
// calculate the x_1, x_2,... values of the gaussian and save it in an arraylist.
|
||||
public static ArrayList<Double> valueOfGaussian(int mat_size, double[][] x, double[][] mat) {
|
||||
ArrayList<Double> answerArray = new ArrayList<Double>();
|
||||
int i, j;
|
||||
|
Reference in New Issue
Block a user