mirror of
https://github.com/TheAlgorithms/Java.git
synced 2025-07-06 17:29:31 +08:00
Add boundary traversal of binary tree (#5639)
This commit is contained in:
@ -0,0 +1,168 @@
|
|||||||
|
package com.thealgorithms.datastructures.trees;
|
||||||
|
|
||||||
|
import java.util.ArrayList;
|
||||||
|
import java.util.Deque;
|
||||||
|
import java.util.LinkedList;
|
||||||
|
import java.util.List;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* BoundaryTraversal
|
||||||
|
* <p>
|
||||||
|
* Start with the Root:
|
||||||
|
* Add the root node to the boundary list.
|
||||||
|
* Traverse the Left Boundary (Excluding Leaf Nodes):
|
||||||
|
* Move down the left side of the tree, adding each non-leaf node to the boundary list.
|
||||||
|
* If a node has a left child, go left; otherwise, go right.
|
||||||
|
* Visit All Leaf Nodes:
|
||||||
|
* Traverse the tree and add all leaf nodes to the boundary list, from left to right.
|
||||||
|
* Traverse the Right Boundary (Excluding Leaf Nodes) in Reverse Order:
|
||||||
|
* Move up the right side of the tree, adding each non-leaf node to a temporary list.
|
||||||
|
* If a node has a right child, go right; otherwise, go left.
|
||||||
|
* Reverse the temporary list and add it to the boundary list.
|
||||||
|
* Combine and Output:
|
||||||
|
* The final boundary list contains the root, left boundary, leaf nodes, and reversed right boundary in that order.
|
||||||
|
*/
|
||||||
|
public final class BoundaryTraversal {
|
||||||
|
private BoundaryTraversal() {
|
||||||
|
}
|
||||||
|
|
||||||
|
// Main function for boundary traversal, returns a list of boundary nodes in order
|
||||||
|
public static List<Integer> boundaryTraversal(BinaryTree.Node root) {
|
||||||
|
List<Integer> result = new ArrayList<>();
|
||||||
|
if (root == null) {
|
||||||
|
return result;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Add root node if it's not a leaf node
|
||||||
|
if (!isLeaf(root)) {
|
||||||
|
result.add(root.data);
|
||||||
|
}
|
||||||
|
|
||||||
|
// Add left boundary
|
||||||
|
addLeftBoundary(root, result);
|
||||||
|
|
||||||
|
// Add leaf nodes
|
||||||
|
addLeaves(root, result);
|
||||||
|
|
||||||
|
// Add right boundary
|
||||||
|
addRightBoundary(root, result);
|
||||||
|
|
||||||
|
return result;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Adds the left boundary, including nodes that have no left child but have a right child
|
||||||
|
private static void addLeftBoundary(BinaryTree.Node node, List<Integer> result) {
|
||||||
|
BinaryTree.Node cur = node.left;
|
||||||
|
|
||||||
|
// If there is no left child but there is a right child, treat the right child as part of the left boundary
|
||||||
|
if (cur == null && node.right != null) {
|
||||||
|
cur = node.right;
|
||||||
|
}
|
||||||
|
|
||||||
|
while (cur != null) {
|
||||||
|
if (!isLeaf(cur)) {
|
||||||
|
result.add(cur.data); // Add non-leaf nodes to result
|
||||||
|
}
|
||||||
|
if (cur.left != null) {
|
||||||
|
cur = cur.left; // Move to the left child
|
||||||
|
} else if (cur.right != null) {
|
||||||
|
cur = cur.right; // If left child is null, move to the right child
|
||||||
|
} else {
|
||||||
|
break; // Stop if there are no children
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Adds leaf nodes (nodes without children)
|
||||||
|
private static void addLeaves(BinaryTree.Node node, List<Integer> result) {
|
||||||
|
if (node == null) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
if (isLeaf(node)) {
|
||||||
|
result.add(node.data); // Add leaf node
|
||||||
|
} else {
|
||||||
|
addLeaves(node.left, result); // Recur for left subtree
|
||||||
|
addLeaves(node.right, result); // Recur for right subtree
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Adds the right boundary, excluding leaf nodes
|
||||||
|
private static void addRightBoundary(BinaryTree.Node node, List<Integer> result) {
|
||||||
|
BinaryTree.Node cur = node.right;
|
||||||
|
List<Integer> temp = new ArrayList<>();
|
||||||
|
|
||||||
|
// If no right boundary is present and there is no left subtree, skip
|
||||||
|
if (cur != null && node.left == null) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
while (cur != null) {
|
||||||
|
if (!isLeaf(cur)) {
|
||||||
|
temp.add(cur.data); // Store non-leaf nodes temporarily
|
||||||
|
}
|
||||||
|
if (cur.right != null) {
|
||||||
|
cur = cur.right; // Move to the right child
|
||||||
|
} else if (cur.left != null) {
|
||||||
|
cur = cur.left; // If right child is null, move to the left child
|
||||||
|
} else {
|
||||||
|
break; // Stop if there are no children
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Add the right boundary nodes in reverse order
|
||||||
|
for (int i = temp.size() - 1; i >= 0; i--) {
|
||||||
|
result.add(temp.get(i));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Checks if a node is a leaf node
|
||||||
|
private static boolean isLeaf(BinaryTree.Node node) {
|
||||||
|
return node.left == null && node.right == null;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Iterative boundary traversal
|
||||||
|
public static List<Integer> iterativeBoundaryTraversal(BinaryTree.Node root) {
|
||||||
|
List<Integer> result = new ArrayList<>();
|
||||||
|
if (root == null) {
|
||||||
|
return result;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Add root node if it's not a leaf node
|
||||||
|
if (!isLeaf(root)) {
|
||||||
|
result.add(root.data);
|
||||||
|
}
|
||||||
|
|
||||||
|
// Handle the left boundary
|
||||||
|
BinaryTree.Node cur = root.left;
|
||||||
|
if (cur == null && root.right != null) {
|
||||||
|
cur = root.right;
|
||||||
|
}
|
||||||
|
while (cur != null) {
|
||||||
|
if (!isLeaf(cur)) {
|
||||||
|
result.add(cur.data); // Add non-leaf nodes to result
|
||||||
|
}
|
||||||
|
cur = (cur.left != null) ? cur.left : cur.right; // Prioritize left child, move to right if left is null
|
||||||
|
}
|
||||||
|
|
||||||
|
// Add leaf nodes
|
||||||
|
addLeaves(root, result);
|
||||||
|
|
||||||
|
// Handle the right boundary using a stack (reverse order)
|
||||||
|
cur = root.right;
|
||||||
|
Deque<Integer> stack = new LinkedList<>();
|
||||||
|
if (cur != null && root.left == null) {
|
||||||
|
return result;
|
||||||
|
}
|
||||||
|
while (cur != null) {
|
||||||
|
if (!isLeaf(cur)) {
|
||||||
|
stack.push(cur.data); // Temporarily store right boundary nodes in a stack
|
||||||
|
}
|
||||||
|
cur = (cur.right != null) ? cur.right : cur.left; // Prioritize right child, move to left if right is null
|
||||||
|
}
|
||||||
|
|
||||||
|
// Add the right boundary nodes from the stack to maintain the correct order
|
||||||
|
while (!stack.isEmpty()) {
|
||||||
|
result.add(stack.pop());
|
||||||
|
}
|
||||||
|
return result;
|
||||||
|
}
|
||||||
|
}
|
@ -0,0 +1,108 @@
|
|||||||
|
package com.thealgorithms.datastructures.trees;
|
||||||
|
|
||||||
|
import static org.junit.jupiter.api.Assertions.assertEquals;
|
||||||
|
|
||||||
|
import java.util.Collections;
|
||||||
|
import java.util.List;
|
||||||
|
import org.junit.jupiter.api.Test;
|
||||||
|
|
||||||
|
/**
|
||||||
|
*
|
||||||
|
*/
|
||||||
|
public class BoundaryTraversalTest {
|
||||||
|
|
||||||
|
@Test
|
||||||
|
public void testNullRoot() {
|
||||||
|
assertEquals(Collections.emptyList(), BoundaryTraversal.boundaryTraversal(null));
|
||||||
|
assertEquals(Collections.emptyList(), BoundaryTraversal.iterativeBoundaryTraversal(null));
|
||||||
|
}
|
||||||
|
|
||||||
|
@Test
|
||||||
|
public void testSingleNodeTree() {
|
||||||
|
final BinaryTree.Node root = new BinaryTree.Node(1);
|
||||||
|
|
||||||
|
List<Integer> expected = List.of(1);
|
||||||
|
|
||||||
|
assertEquals(expected, BoundaryTraversal.boundaryTraversal(root));
|
||||||
|
assertEquals(expected, BoundaryTraversal.iterativeBoundaryTraversal(root));
|
||||||
|
}
|
||||||
|
|
||||||
|
/*
|
||||||
|
1
|
||||||
|
/ \
|
||||||
|
2 3
|
||||||
|
/ \ / \
|
||||||
|
4 5 6 7
|
||||||
|
|
||||||
|
*/
|
||||||
|
@Test
|
||||||
|
public void testCompleteBinaryTree() {
|
||||||
|
final BinaryTree.Node root = TreeTestUtils.createTree(new Integer[] {1, 2, 3, 4, 5, 6, 7});
|
||||||
|
|
||||||
|
List<Integer> expected = List.of(1, 2, 4, 5, 6, 7, 3);
|
||||||
|
|
||||||
|
assertEquals(expected, BoundaryTraversal.boundaryTraversal(root));
|
||||||
|
assertEquals(expected, BoundaryTraversal.iterativeBoundaryTraversal(root));
|
||||||
|
}
|
||||||
|
|
||||||
|
/*
|
||||||
|
1
|
||||||
|
/ \
|
||||||
|
2 7
|
||||||
|
/ \
|
||||||
|
3 8
|
||||||
|
\ /
|
||||||
|
4 9
|
||||||
|
/ \
|
||||||
|
5 6
|
||||||
|
/ \
|
||||||
|
10 11
|
||||||
|
*/
|
||||||
|
@Test
|
||||||
|
public void testBoundaryTraversal() {
|
||||||
|
final BinaryTree.Node root = TreeTestUtils.createTree(new Integer[] {1, 2, 7, 3, null, null, 8, null, 4, 9, null, 5, 6, 10, 11});
|
||||||
|
|
||||||
|
List<Integer> expected = List.of(1, 2, 3, 4, 5, 6, 10, 11, 9, 8, 7);
|
||||||
|
|
||||||
|
assertEquals(expected, BoundaryTraversal.boundaryTraversal(root));
|
||||||
|
assertEquals(expected, BoundaryTraversal.iterativeBoundaryTraversal(root));
|
||||||
|
}
|
||||||
|
|
||||||
|
/*
|
||||||
|
1
|
||||||
|
/
|
||||||
|
2
|
||||||
|
/
|
||||||
|
3
|
||||||
|
/
|
||||||
|
4
|
||||||
|
*/
|
||||||
|
@Test
|
||||||
|
public void testLeftSkewedTree() {
|
||||||
|
final BinaryTree.Node root = TreeTestUtils.createTree(new Integer[] {1, 2, null, 3, null, 4, null});
|
||||||
|
|
||||||
|
List<Integer> expected = List.of(1, 2, 3, 4);
|
||||||
|
|
||||||
|
assertEquals(expected, BoundaryTraversal.boundaryTraversal(root));
|
||||||
|
assertEquals(expected, BoundaryTraversal.iterativeBoundaryTraversal(root));
|
||||||
|
}
|
||||||
|
|
||||||
|
/*
|
||||||
|
5
|
||||||
|
\
|
||||||
|
6
|
||||||
|
\
|
||||||
|
7
|
||||||
|
\
|
||||||
|
8
|
||||||
|
*/
|
||||||
|
@Test
|
||||||
|
public void testRightSkewedTree() {
|
||||||
|
final BinaryTree.Node root = TreeTestUtils.createTree(new Integer[] {5, null, 6, null, 7, null, 8});
|
||||||
|
|
||||||
|
List<Integer> expected = List.of(5, 6, 7, 8);
|
||||||
|
|
||||||
|
assertEquals(expected, BoundaryTraversal.boundaryTraversal(root));
|
||||||
|
assertEquals(expected, BoundaryTraversal.iterativeBoundaryTraversal(root));
|
||||||
|
}
|
||||||
|
}
|
Reference in New Issue
Block a user