mirror of
https://github.com/TheAlgorithms/Java.git
synced 2025-07-27 06:23:08 +08:00
Add WelshPowell
(Graph Colouring) (#5034)
* Welsh Powell Algorithm + Test --------- Co-authored-by: Piotr Idzik <65706193+vil02@users.noreply.github.com>
This commit is contained in:
@ -0,0 +1,124 @@
|
||||
package com.thealgorithms.datastructures.graphs;
|
||||
|
||||
import static org.junit.jupiter.api.Assertions.assertEquals;
|
||||
import static org.junit.jupiter.api.Assertions.assertThrows;
|
||||
import static org.junit.jupiter.api.Assertions.assertTrue;
|
||||
|
||||
import com.thealgorithms.datastructures.graphs.WelshPowell.Graph;
|
||||
import java.util.Arrays;
|
||||
import org.junit.jupiter.api.Test;
|
||||
|
||||
class WelshPowellTest {
|
||||
|
||||
@Test
|
||||
void testSimpleGraph() {
|
||||
final var graph = WelshPowell.makeGraph(4, new int[][] {{0, 1}, {1, 2}, {2, 3}});
|
||||
int[] colors = WelshPowell.findColoring(graph);
|
||||
assertTrue(isColoringValid(graph, colors));
|
||||
assertEquals(2, countDistinctColors(colors));
|
||||
}
|
||||
|
||||
@Test
|
||||
void testDisconnectedGraph() {
|
||||
final var graph = WelshPowell.makeGraph(3, new int[][] {}); // No edges
|
||||
int[] colors = WelshPowell.findColoring(graph);
|
||||
assertTrue(isColoringValid(graph, colors));
|
||||
assertEquals(1, countDistinctColors(colors));
|
||||
}
|
||||
|
||||
@Test
|
||||
void testCompleteGraph() {
|
||||
final var graph = WelshPowell.makeGraph(3, new int[][] {{0, 1}, {1, 2}, {2, 0}});
|
||||
int[] colors = WelshPowell.findColoring(graph);
|
||||
assertTrue(isColoringValid(graph, colors));
|
||||
assertEquals(3, countDistinctColors(colors));
|
||||
}
|
||||
|
||||
// The following test originates from the following website : https://www.geeksforgeeks.org/welsh-powell-graph-colouring-algorithm/
|
||||
@Test
|
||||
void testComplexGraph() {
|
||||
int[][] edges = {
|
||||
{0, 7}, // A-H
|
||||
{0, 1}, // A-B
|
||||
{1, 3}, // B-D
|
||||
{2, 3}, // C-D
|
||||
{3, 8}, // D-I
|
||||
{3, 10}, // D-K
|
||||
{4, 10}, // E-K
|
||||
{4, 5}, // E-F
|
||||
{5, 6}, // F-G
|
||||
{6, 10}, // G-K
|
||||
{6, 7}, // G-H
|
||||
{7, 8}, // H-I
|
||||
{7, 9}, // H-J
|
||||
{7, 10}, // H-K
|
||||
{8, 9}, // I-J
|
||||
{9, 10}, // J-K
|
||||
};
|
||||
|
||||
final var graph = WelshPowell.makeGraph(11, edges); // 11 vertices from A (0) to K (10)
|
||||
int[] colors = WelshPowell.findColoring(graph);
|
||||
|
||||
assertTrue(isColoringValid(graph, colors), "The coloring should be valid with no adjacent vertices sharing the same color.");
|
||||
assertEquals(3, countDistinctColors(colors), "The chromatic number of the graph should be 3.");
|
||||
}
|
||||
|
||||
@Test
|
||||
void testNegativeVertices() {
|
||||
assertThrows(IllegalArgumentException.class, () -> { WelshPowell.makeGraph(-1, new int[][] {}); }, "Number of vertices cannot be negative");
|
||||
}
|
||||
|
||||
@Test
|
||||
void testSelfLoop() {
|
||||
assertThrows(IllegalArgumentException.class, () -> { WelshPowell.makeGraph(3, new int[][] {{0, 0}}); }, "Self-loops are not allowed");
|
||||
}
|
||||
|
||||
@Test
|
||||
void testInvalidVertex() {
|
||||
assertThrows(IllegalArgumentException.class, () -> { WelshPowell.makeGraph(3, new int[][] {{0, 3}}); }, "Vertex out of bounds");
|
||||
assertThrows(IllegalArgumentException.class, () -> { WelshPowell.makeGraph(3, new int[][] {{0, -1}}); }, "Vertex out of bounds");
|
||||
}
|
||||
|
||||
@Test
|
||||
void testInvalidEdgeArray() {
|
||||
assertThrows(IllegalArgumentException.class, () -> { WelshPowell.makeGraph(3, new int[][] {{0}}); }, "Edge array must have exactly two elements");
|
||||
}
|
||||
|
||||
@Test
|
||||
void testWithPreColoredVertex() {
|
||||
// Create a linear graph with 4 vertices and edges connecting them in sequence
|
||||
final var graph = WelshPowell.makeGraph(4, new int[][] {{0, 1}, {1, 2}, {2, 3}});
|
||||
|
||||
// Apply the Welsh-Powell coloring algorithm to the graph
|
||||
int[] colors = WelshPowell.findColoring(graph);
|
||||
|
||||
// Validate that the coloring is correct (no two adjacent vertices have the same color)
|
||||
assertTrue(isColoringValid(graph, colors));
|
||||
|
||||
// Check if the algorithm has used at least 2 colors (expected for a linear graph)
|
||||
assertTrue(countDistinctColors(colors) >= 2);
|
||||
|
||||
// Verify that all vertices have been assigned a color
|
||||
for (int color : colors) {
|
||||
assertTrue(color >= 0);
|
||||
}
|
||||
}
|
||||
|
||||
private boolean isColoringValid(Graph graph, int[] colors) {
|
||||
if (Arrays.stream(colors).anyMatch(n -> n < 0)) {
|
||||
return false;
|
||||
}
|
||||
for (int i = 0; i < graph.getNumVertices(); i++) {
|
||||
for (int neighbor : graph.getAdjacencyList(i)) {
|
||||
if (i != neighbor && colors[i] == colors[neighbor]) {
|
||||
return false; // Adjacent vertices have the same color
|
||||
}
|
||||
}
|
||||
}
|
||||
return true; // No adjacent vertices share the same color
|
||||
}
|
||||
|
||||
private int countDistinctColors(int[] colors) {
|
||||
return (int) Arrays.stream(colors).distinct().count();
|
||||
}
|
||||
}
|
Reference in New Issue
Block a user