mirror of
https://github.com/TheAlgorithms/Java.git
synced 2025-07-07 09:45:04 +08:00
Add chinese remainder theorem (#5873)
This commit is contained in:
@ -0,0 +1,84 @@
|
||||
package com.thealgorithms.maths;
|
||||
|
||||
import java.util.List;
|
||||
|
||||
/**
|
||||
* @brief Implementation of the Chinese Remainder Theorem (CRT) algorithm
|
||||
* @details
|
||||
* The Chinese Remainder Theorem (CRT) is used to solve systems of
|
||||
* simultaneous congruences. Given several pairwise coprime moduli
|
||||
* and corresponding remainders, the algorithm finds the smallest
|
||||
* positive solution.
|
||||
*/
|
||||
public final class ChineseRemainderTheorem {
|
||||
private ChineseRemainderTheorem() {
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Solves the Chinese Remainder Theorem problem.
|
||||
* @param remainders The list of remainders.
|
||||
* @param moduli The list of pairwise coprime moduli.
|
||||
* @return The smallest positive solution that satisfies all the given congruences.
|
||||
*/
|
||||
public static int solveCRT(List<Integer> remainders, List<Integer> moduli) {
|
||||
int product = 1;
|
||||
int result = 0;
|
||||
|
||||
// Calculate the product of all moduli
|
||||
for (int mod : moduli) {
|
||||
product *= mod;
|
||||
}
|
||||
|
||||
// Apply the formula for each congruence
|
||||
for (int i = 0; i < moduli.size(); i++) {
|
||||
int partialProduct = product / moduli.get(i);
|
||||
int inverse = modInverse(partialProduct, moduli.get(i));
|
||||
result += remainders.get(i) * partialProduct * inverse;
|
||||
}
|
||||
|
||||
// Adjust result to be the smallest positive solution
|
||||
result = result % product;
|
||||
if (result < 0) {
|
||||
result += product;
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Computes the modular inverse of a number with respect to a modulus using
|
||||
* the Extended Euclidean Algorithm.
|
||||
* @param a The number for which to find the inverse.
|
||||
* @param m The modulus.
|
||||
* @return The modular inverse of a modulo m.
|
||||
*/
|
||||
private static int modInverse(int a, int m) {
|
||||
int m0 = m;
|
||||
int x0 = 0;
|
||||
int x1 = 1;
|
||||
|
||||
if (m == 1) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
while (a > 1) {
|
||||
int q = a / m;
|
||||
int t = m;
|
||||
|
||||
// m is remainder now, process same as Euclid's algorithm
|
||||
m = a % m;
|
||||
a = t;
|
||||
t = x0;
|
||||
|
||||
x0 = x1 - q * x0;
|
||||
x1 = t;
|
||||
}
|
||||
|
||||
// Make x1 positive
|
||||
if (x1 < 0) {
|
||||
x1 += m0;
|
||||
}
|
||||
|
||||
return x1;
|
||||
}
|
||||
}
|
Reference in New Issue
Block a user