Add tests, remove main in JumpSearch (#5669)

This commit is contained in:
Hardik Pawar
2024-10-11 01:21:06 +05:30
committed by GitHub
parent f992fc425d
commit 38285771c8
3 changed files with 128 additions and 22 deletions

View File

@ -2,44 +2,55 @@ package com.thealgorithms.searches;
import com.thealgorithms.devutils.searches.SearchAlgorithm;
/**
* An implementation of the Jump Search algorithm.
*
* <p>
* Jump Search is an algorithm for searching sorted arrays. It works by dividing the array
* into blocks of a fixed size (the block size is typically the square root of the array length)
* and jumping ahead by this block size to find a range where the target element may be located.
* Once the range is found, a linear search is performed within that block.
*
* <p>
* The Jump Search algorithm is particularly effective for large sorted arrays where the cost of
* performing a linear search on the entire array would be prohibitive.
*
* <p>
* Worst-case performance: O(√N)<br>
* Best-case performance: O(1)<br>
* Average performance: O(√N)<br>
* Worst-case space complexity: O(1)
*
* <p>
* This class implements the {@link SearchAlgorithm} interface, providing a generic search method
* for any comparable type.
*/
public class JumpSearch implements SearchAlgorithm {
public static void main(String[] args) {
JumpSearch jumpSearch = new JumpSearch();
Integer[] array = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
for (int i = 0; i < array.length; i++) {
assert jumpSearch.find(array, i) == i;
}
assert jumpSearch.find(array, -1) == -1;
assert jumpSearch.find(array, 11) == -1;
}
/**
* Jump Search algorithm implements
* Jump Search algorithm implementation.
*
* @param array the array contains elements
* @param key to be searched
* @return index of {@code key} if found, otherwise <tt>-1</tt>
* @param array the sorted array containing elements
* @param key the element to be searched
* @return the index of {@code key} if found, otherwise -1
*/
@Override
public <T extends Comparable<T>> int find(T[] array, T key) {
int length = array.length;
/* length of array */
int blockSize = (int) Math.sqrt(length);
/* block size to be jumped */
int limit = blockSize;
while (key.compareTo(array[limit]) > 0 && limit < array.length - 1) {
limit = Math.min(limit + blockSize, array.length - 1);
// Jumping ahead to find the block where the key may be located
while (limit < length && key.compareTo(array[limit]) > 0) {
limit = Math.min(limit + blockSize, length - 1);
}
for (int i = limit - blockSize; i <= limit; i++) {
if (array[i] == key) {
/* execute linear search */
// Perform linear search within the identified block
for (int i = limit - blockSize; i <= limit && i < length; i++) {
if (array[i].equals(key)) {
return i;
}
}
return -1;
/* not found */
}
}