Add fast exponentiation algorithm (#5715)

This commit is contained in:
Saahil Mahato
2024-10-12 13:24:05 +05:45
committed by GitHub
parent f8397bf09b
commit 31de2db0ae
2 changed files with 134 additions and 0 deletions

View File

@ -0,0 +1,67 @@
package com.thealgorithms.maths;
/**
* This class provides a method to perform fast exponentiation (exponentiation by squaring),
* which calculates (base^exp) % mod efficiently.
*
* <p>The algorithm works by repeatedly squaring the base and reducing the exponent
* by half at each step. It exploits the fact that:
* <ul>
* <li>If exp is even, (base^exp) = (base^(exp/2))^2</li>
* <li>If exp is odd, (base^exp) = base * (base^(exp-1))</li>
* </ul>
* The result is computed modulo `mod` at each step to avoid overflow and keep the result within bounds.
* </p>
*
* <p><strong>Time complexity:</strong> O(log(exp)) — much faster than naive exponentiation (O(exp)).</p>
*
* For more information, please visit {@link https://en.wikipedia.org/wiki/Exponentiation_by_squaring}
*/
public final class FastExponentiation {
/**
* Private constructor to hide the implicit public one.
*/
private FastExponentiation() {
}
/**
* Performs fast exponentiation to calculate (base^exp) % mod using the method
* of exponentiation by squaring.
*
* <p>This method efficiently computes the result by squaring the base and halving
* the exponent at each step. It multiplies the base to the result when the exponent is odd.
*
* @param base the base number to be raised to the power of exp
* @param exp the exponent to which the base is raised
* @param mod the modulus to ensure the result does not overflow
* @return (base^exp) % mod
* @throws IllegalArgumentException if the modulus is less than or equal to 0
* @throws ArithmeticException if the exponent is negative (not supported in this implementation)
*/
public static long fastExponentiation(long base, long exp, long mod) {
if (mod <= 0) {
throw new IllegalArgumentException("Modulus must be positive.");
}
if (exp < 0) {
throw new ArithmeticException("Negative exponent is not supported.");
}
long result = 1;
base = base % mod; // Take the modulus of the base to handle large base values
// Fast exponentiation by squaring algorithm
while (exp > 0) {
// If exp is odd, multiply the base to the result
if ((exp & 1) == 1) { // exp & 1 checks if exp is odd
result = result * base % mod;
}
// Square the base and halve the exponent
base = base * base % mod; // base^2 % mod to avoid overflow
exp >>= 1; // Right shift exp to divide it by 2
}
return result;
}
}

View File

@ -0,0 +1,67 @@
package com.thealgorithms.maths;
import static org.junit.jupiter.api.Assertions.assertEquals;
import static org.junit.jupiter.api.Assertions.assertThrows;
import org.junit.jupiter.api.Test;
/**
* Unit tests for the {@link FastExponentiation} class.
*
* <p>This class contains various test cases to verify the correctness of the fastExponentiation method.
* It covers basic functionality, edge cases, and exceptional cases.
*/
class FastExponentiationTest {
/**
* Tests fast exponentiation with small numbers.
*/
@Test
void testSmallNumbers() {
assertEquals(1024, FastExponentiation.fastExponentiation(2, 10, 10000), "2^10 mod 10000 should be 1024");
assertEquals(81, FastExponentiation.fastExponentiation(3, 4, 1000), "3^4 mod 1000 should be 81");
}
/**
* Tests the behavior of the fast exponentiation method when using a modulus.
*/
@Test
void testWithModulo() {
assertEquals(24, FastExponentiation.fastExponentiation(2, 10, 1000), "2^10 mod 1000 should be 24");
assertEquals(0, FastExponentiation.fastExponentiation(10, 5, 10), "10^5 mod 10 should be 0");
}
/**
* Tests the edge cases where base or exponent is 0.
*/
@Test
void testBaseCases() {
assertEquals(1, FastExponentiation.fastExponentiation(2, 0, 1000), "Any number raised to the power 0 mod anything should be 1");
assertEquals(0, FastExponentiation.fastExponentiation(0, 10, 1000), "0 raised to any power should be 0");
assertEquals(1, FastExponentiation.fastExponentiation(0, 0, 1000), "0^0 is considered 0 in modular arithmetic.");
}
/**
* Tests fast exponentiation with a negative base to ensure correctness under modular arithmetic.
*/
@Test
void testNegativeBase() {
assertEquals(9765625, FastExponentiation.fastExponentiation(-5, 10, 1000000007), "-5^10 mod 1000000007 should be 9765625");
}
/**
* Tests that a negative exponent throws an ArithmeticException.
*/
@Test
void testNegativeExponent() {
assertThrows(ArithmeticException.class, () -> { FastExponentiation.fastExponentiation(2, -5, 1000); });
}
/**
* Tests that the method throws an IllegalArgumentException for invalid modulus values.
*/
@Test
void testInvalidModulus() {
assertThrows(IllegalArgumentException.class, () -> { FastExponentiation.fastExponentiation(2, 5, 0); });
}
}