mirror of
https://github.com/TheAlgorithms/Java.git
synced 2025-08-01 03:33:54 +08:00
Fix package declarations (#2576)
This commit is contained in:

committed by
GitHub

parent
60a0c23544
commit
2b7a977cc8
@ -1,3 +1,5 @@
|
||||
package Maths;
|
||||
|
||||
/**
|
||||
* A number is said to be an Automorphic, if it is present in the last digit(s) of its square.
|
||||
* Example- Let the number be 25, its square is 625.
|
||||
|
@ -1,4 +1,4 @@
|
||||
package com.maths;
|
||||
package Maths;
|
||||
|
||||
import java.util.ArrayList;
|
||||
|
||||
|
@ -1,4 +1,4 @@
|
||||
package com.maths;
|
||||
package Maths;
|
||||
|
||||
/**
|
||||
* Class for linear convolution of two discrete signals
|
||||
|
@ -1,4 +1,4 @@
|
||||
package com.maths;
|
||||
package Maths;
|
||||
|
||||
import java.util.ArrayList;
|
||||
|
||||
|
@ -1,4 +1,4 @@
|
||||
package com.maths;
|
||||
package Maths;
|
||||
|
||||
import java.util.ArrayList;
|
||||
import java.util.Collections;
|
||||
|
@ -1,4 +1,4 @@
|
||||
package com.maths;
|
||||
package Maths;
|
||||
|
||||
import java.util.ArrayList;
|
||||
|
||||
|
@ -1,3 +1,5 @@
|
||||
package Maths;
|
||||
|
||||
/*
|
||||
* Algorithm explanation: https://technotip.com/6774/c-program-to-find-generic-root-of-a-number/#:~:text=Generic%20Root%3A%20of%20a%20number,get%20a%20single%2Ddigit%20output.&text=For%20Example%3A%20If%20user%20input,%2B%204%20%2B%205%20%3D%2015.
|
||||
*/
|
||||
|
@ -1,4 +1,7 @@
|
||||
import java.util.*;
|
||||
package Maths;
|
||||
|
||||
import java.util.*;
|
||||
|
||||
class KeithNumber
|
||||
{
|
||||
//user-defined function that checks if the given number is Keith or not
|
||||
|
@ -1,4 +1,4 @@
|
||||
//package Maths;
|
||||
package Maths;
|
||||
|
||||
/* This is a program to check if a number is a Krishnamurthy number or not.
|
||||
A number is a Krishnamurthy number if the sum of the factorials of the digits of the number is equal to the number itself.
|
||||
|
@ -1,4 +1,7 @@
|
||||
package Maths;
|
||||
|
||||
import java.util.*;
|
||||
|
||||
/*A magic square of order n is an arrangement of distinct n^2 integers,in a square, such that the n numbers in all
|
||||
rows, all columns, and both diagonals sum to the same constant. A magic square contains the integers from 1 to n^2.*/
|
||||
public class MagicSquare {
|
||||
|
@ -1,3 +1,5 @@
|
||||
package Maths;
|
||||
|
||||
/**
|
||||
* Translates numbers into the Roman Numeral System.
|
||||
*
|
||||
|
Reference in New Issue
Block a user