mirror of
https://github.com/TheAlgorithms/Java.git
synced 2025-07-19 09:50:03 +08:00
docs: update the whole repository
* fix some bugs * delete duplicate files * format code
This commit is contained in:
98
DynamicProgramming/Fibonacci.java
Normal file
98
DynamicProgramming/Fibonacci.java
Normal file
@ -0,0 +1,98 @@
|
||||
package DynamicProgramming;
|
||||
|
||||
import java.io.BufferedReader;
|
||||
import java.io.InputStreamReader;
|
||||
import java.util.HashMap;
|
||||
import java.util.Map;
|
||||
|
||||
/**
|
||||
* @author Varun Upadhyay (https://github.com/varunu28)
|
||||
*/
|
||||
|
||||
public class Fibonacci {
|
||||
|
||||
private static Map<Integer, Integer> map = new HashMap<>();
|
||||
|
||||
public static void main(String[] args) throws Exception {
|
||||
|
||||
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
|
||||
int n = Integer.parseInt(br.readLine());
|
||||
|
||||
// Methods all returning [0, 1, 1, 2, 3, 5, ...] for n = [0, 1, 2, 3, 4, 5, ...]
|
||||
System.out.println(fibMemo(n));
|
||||
System.out.println(fibBotUp(n));
|
||||
}
|
||||
|
||||
/**
|
||||
* This method finds the nth fibonacci number using memoization technique
|
||||
*
|
||||
* @param n The input n for which we have to determine the fibonacci number
|
||||
* Outputs the nth fibonacci number
|
||||
**/
|
||||
private static int fibMemo(int n) {
|
||||
if (map.containsKey(n)) {
|
||||
return map.get(n);
|
||||
}
|
||||
|
||||
int f;
|
||||
|
||||
if (n <= 1) {
|
||||
f = n;
|
||||
} else {
|
||||
f = fibMemo(n - 1) + fibMemo(n - 2);
|
||||
map.put(n, f);
|
||||
}
|
||||
return f;
|
||||
}
|
||||
|
||||
/**
|
||||
* This method finds the nth fibonacci number using bottom up
|
||||
*
|
||||
* @param n The input n for which we have to determine the fibonacci number
|
||||
* Outputs the nth fibonacci number
|
||||
**/
|
||||
private static int fibBotUp(int n) {
|
||||
|
||||
Map<Integer, Integer> fib = new HashMap<>();
|
||||
|
||||
for (int i = 0; i <= n; i++) {
|
||||
int f;
|
||||
if (i <= 1) {
|
||||
f = i;
|
||||
} else {
|
||||
f = fib.get(i - 1) + fib.get(i - 2);
|
||||
}
|
||||
fib.put(i, f);
|
||||
}
|
||||
|
||||
return fib.get(n);
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* This method finds the nth fibonacci number using bottom up
|
||||
*
|
||||
* @param n The input n for which we have to determine the fibonacci number
|
||||
* Outputs the nth fibonacci number
|
||||
* <p>
|
||||
* This is optimized version of Fibonacci Program. Without using Hashmap and recursion.
|
||||
* It saves both memory and time.
|
||||
* Space Complexity will be O(1)
|
||||
* Time Complexity will be O(n)
|
||||
* <p>
|
||||
* Whereas , the above functions will take O(n) Space.
|
||||
* @author Shoaib Rayeen (https://github.com/shoaibrayeen)
|
||||
**/
|
||||
private static int fibOptimized(int n) {
|
||||
if (n == 0) {
|
||||
return 0;
|
||||
}
|
||||
int prev = 0, res = 1, next;
|
||||
for (int i = 2; i < n; i++) {
|
||||
next = prev + res;
|
||||
prev = res;
|
||||
res = next;
|
||||
}
|
||||
return res;
|
||||
}
|
||||
}
|
Reference in New Issue
Block a user