docs: update the whole repository

* fix some bugs
* delete duplicate files
* format code
This commit is contained in:
yanglbme
2019-05-09 19:32:54 +08:00
parent 163db8521a
commit 29948363da
368 changed files with 4372 additions and 30841 deletions

View File

@ -0,0 +1,79 @@
package DynamicProgramming;
/**
* @author Varun Upadhyay (https://github.com/varunu28)
*/
public class CoinChange {
// Driver Program
public static void main(String[] args) {
int amount = 12;
int[] coins = {2, 4, 5};
System.out.println("Number of combinations of getting change for " + amount + " is: " + change(coins, amount));
System.out.println("Minimum number of coins required for amount :" + amount + " is: " + minimumCoins(coins, amount));
}
/**
* This method finds the number of combinations of getting change for a given amount and change coins
*
* @param coins The list of coins
* @param amount The amount for which we need to find the change
* Finds the number of combinations of change
**/
public static int change(int[] coins, int amount) {
int[] combinations = new int[amount + 1];
combinations[0] = 1;
for (int coin : coins) {
for (int i = coin; i < amount + 1; i++) {
combinations[i] += combinations[i - coin];
}
// Uncomment the below line to see the state of combinations for each coin
// printAmount(combinations);
}
return combinations[amount];
}
/**
* This method finds the minimum number of coins needed for a given amount.
*
* @param coins The list of coins
* @param amount The amount for which we need to find the minimum number of coins.
* Finds the the minimum number of coins that make a given value.
**/
public static int minimumCoins(int[] coins, int amount) {
//minimumCoins[i] will store the minimum coins needed for amount i
int[] minimumCoins = new int[amount + 1];
minimumCoins[0] = 0;
for (int i = 1; i <= amount; i++) {
minimumCoins[i] = Integer.MAX_VALUE;
}
for (int i = 1; i <= amount; i++) {
for (int coin : coins) {
if (coin <= i) {
int sub_res = minimumCoins[i - coin];
if (sub_res != Integer.MAX_VALUE && sub_res + 1 < minimumCoins[i])
minimumCoins[i] = sub_res + 1;
}
}
}
// Uncomment the below line to see the state of combinations for each coin
//printAmount(minimumCoins);
return minimumCoins[amount];
}
// A basic print method which prints all the contents of the array
public static void printAmount(int[] arr) {
for (int i = 0; i < arr.length; i++) {
System.out.print(arr[i] + " ");
}
System.out.println();
}
}

View File

@ -0,0 +1,103 @@
package DynamicProgramming; /**
* Author : SUBHAM SANGHAI
* A DynamicProgramming based solution for Edit Distance problem In Java
* Description of Edit Distance with an Example:
* <p>
* Edit distance is a way of quantifying how dissimilar two strings (e.g., words) are to one another,
* by counting the minimum number of operations required to transform one string into the other. The
* distance operations are the removal, insertion, or substitution of a character in the string.
* <p>
* <p>
* The Distance between "kitten" and "sitting" is 3. A minimal edit script that transforms the former into the latter is:
* <p>
* kitten → sitten (substitution of "s" for "k")
* sitten → sittin (substitution of "i" for "e")
* sittin → sitting (insertion of "g" at the end).
* Description of Edit Distance with an Example:
* <p>
* Edit distance is a way of quantifying how dissimilar two strings (e.g., words) are to one another,
* by counting the minimum number of operations required to transform one string into the other. The
* distance operations are the removal, insertion, or substitution of a character in the string.
* <p>
* <p>
* The Distance between "kitten" and "sitting" is 3. A minimal edit script that transforms the former into the latter is:
* <p>
* kitten → sitten (substitution of "s" for "k")
* sitten → sittin (substitution of "i" for "e")
* sittin → sitting (insertion of "g" at the end).
**/
/**Description of Edit Distance with an Example:
Edit distance is a way of quantifying how dissimilar two strings (e.g., words) are to one another,
by counting the minimum number of operations required to transform one string into the other. The
distance operations are the removal, insertion, or substitution of a character in the string.
The Distance between "kitten" and "sitting" is 3. A minimal edit script that transforms the former into the latter is:
kitten → sitten (substitution of "s" for "k")
sitten → sittin (substitution of "i" for "e")
sittin → sitting (insertion of "g" at the end).**/
import java.util.Scanner;
public class Edit_Distance {
public static int minDistance(String word1, String word2) {
int len1 = word1.length();
int len2 = word2.length();
// len1+1, len2+1, because finally return dp[len1][len2]
int[][] dp = new int[len1 + 1][len2 + 1];
/* If second string is empty, the only option is to
insert all characters of first string into second*/
for (int i = 0; i <= len1; i++) {
dp[i][0] = i;
}
/* If first string is empty, the only option is to
insert all characters of second string into first*/
for (int j = 0; j <= len2; j++) {
dp[0][j] = j;
}
//iterate though, and check last char
for (int i = 0; i < len1; i++) {
char c1 = word1.charAt(i);
for (int j = 0; j < len2; j++) {
char c2 = word2.charAt(j);
//if last two chars equal
if (c1 == c2) {
//update dp value for +1 length
dp[i + 1][j + 1] = dp[i][j];
} else {
/* if two characters are different ,
then take the minimum of the various operations(i.e insertion,removal,substitution)*/
int replace = dp[i][j] + 1;
int insert = dp[i][j + 1] + 1;
int delete = dp[i + 1][j] + 1;
int min = replace > insert ? insert : replace;
min = delete > min ? min : delete;
dp[i + 1][j + 1] = min;
}
}
}
/* return the final answer , after traversing through both the strings*/
return dp[len1][len2];
}
// Driver program to test above function
public static void main(String args[]) {
Scanner input = new Scanner(System.in);
String s1, s2;
System.out.println("Enter the First String");
s1 = input.nextLine();
System.out.println("Enter the Second String");
s2 = input.nextLine();
//ans stores the final Edit Distance between the two strings
int ans = 0;
ans = minDistance(s1, s2);
System.out.println("The minimum Edit Distance between \"" + s1 + "\" and \"" + s2 + "\" is " + ans);
}
}

View File

@ -0,0 +1,49 @@
package DynamicProgramming;
/**
* DynamicProgramming solution for the Egg Dropping Puzzle
*/
public class EggDropping {
// min trials with n eggs and m floors
private static int minTrials(int n, int m) {
int[][] eggFloor = new int[n + 1][m + 1];
int result, x;
for (int i = 1; i <= n; i++) {
eggFloor[i][0] = 0; // Zero trial for zero floor.
eggFloor[i][1] = 1; // One trial for one floor
}
// j trials for only 1 egg
for (int j = 1; j <= m; j++)
eggFloor[1][j] = j;
// Using bottom-up approach in DP
for (int i = 2; i <= n; i++) {
for (int j = 2; j <= m; j++) {
eggFloor[i][j] = Integer.MAX_VALUE;
for (x = 1; x <= j; x++) {
result = 1 + Math.max(eggFloor[i - 1][x - 1], eggFloor[i][j - x]);
// choose min of all values for particular x
if (result < eggFloor[i][j])
eggFloor[i][j] = result;
}
}
}
return eggFloor[n][m];
}
public static void main(String args[]) {
int n = 2, m = 4;
// result outputs min no. of trials in worst case for n eggs and m floors
int result = minTrials(n, m);
System.out.println(result);
}
}

View File

@ -0,0 +1,98 @@
package DynamicProgramming;
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.util.HashMap;
import java.util.Map;
/**
* @author Varun Upadhyay (https://github.com/varunu28)
*/
public class Fibonacci {
private static Map<Integer, Integer> map = new HashMap<>();
public static void main(String[] args) throws Exception {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
int n = Integer.parseInt(br.readLine());
// Methods all returning [0, 1, 1, 2, 3, 5, ...] for n = [0, 1, 2, 3, 4, 5, ...]
System.out.println(fibMemo(n));
System.out.println(fibBotUp(n));
}
/**
* This method finds the nth fibonacci number using memoization technique
*
* @param n The input n for which we have to determine the fibonacci number
* Outputs the nth fibonacci number
**/
private static int fibMemo(int n) {
if (map.containsKey(n)) {
return map.get(n);
}
int f;
if (n <= 1) {
f = n;
} else {
f = fibMemo(n - 1) + fibMemo(n - 2);
map.put(n, f);
}
return f;
}
/**
* This method finds the nth fibonacci number using bottom up
*
* @param n The input n for which we have to determine the fibonacci number
* Outputs the nth fibonacci number
**/
private static int fibBotUp(int n) {
Map<Integer, Integer> fib = new HashMap<>();
for (int i = 0; i <= n; i++) {
int f;
if (i <= 1) {
f = i;
} else {
f = fib.get(i - 1) + fib.get(i - 2);
}
fib.put(i, f);
}
return fib.get(n);
}
/**
* This method finds the nth fibonacci number using bottom up
*
* @param n The input n for which we have to determine the fibonacci number
* Outputs the nth fibonacci number
* <p>
* This is optimized version of Fibonacci Program. Without using Hashmap and recursion.
* It saves both memory and time.
* Space Complexity will be O(1)
* Time Complexity will be O(n)
* <p>
* Whereas , the above functions will take O(n) Space.
* @author Shoaib Rayeen (https://github.com/shoaibrayeen)
**/
private static int fibOptimized(int n) {
if (n == 0) {
return 0;
}
int prev = 0, res = 1, next;
for (int i = 2; i < n; i++) {
next = prev + res;
prev = res;
res = next;
}
return res;
}
}

View File

@ -0,0 +1,73 @@
package DynamicProgramming;
import java.util.LinkedList;
import java.util.Queue;
import java.util.Scanner;
import java.util.Vector;
public class Ford_Fulkerson {
Scanner scan = new Scanner(System.in);
final static int INF = 987654321;
static int V; // edges
static int[][] capacity, flow;
public static void main(String[] args) {
System.out.println("V : 6");
V = 6;
capacity = new int[V][V];
capacity[0][1] = 12;
capacity[0][3] = 13;
capacity[1][2] = 10;
capacity[2][3] = 13;
capacity[2][4] = 3;
capacity[2][5] = 15;
capacity[3][2] = 7;
capacity[3][4] = 15;
capacity[4][5] = 17;
System.out.println("Max capacity in networkFlow : " + networkFlow(0, 5));
}
private static int networkFlow(int source, int sink) {
flow = new int[V][V];
int totalFlow = 0;
while (true) {
Vector<Integer> parent = new Vector<>(V);
for (int i = 0; i < V; i++)
parent.add(-1);
Queue<Integer> q = new LinkedList<>();
parent.set(source, source);
q.add(source);
while (!q.isEmpty() && parent.get(sink) == -1) {
int here = q.peek();
q.poll();
for (int there = 0; there < V; ++there)
if (capacity[here][there] - flow[here][there] > 0 && parent.get(there) == -1) {
q.add(there);
parent.set(there, here);
}
}
if (parent.get(sink) == -1)
break;
int amount = INF;
String printer = "path : ";
StringBuilder sb = new StringBuilder();
for (int p = sink; p != source; p = parent.get(p)) {
amount = Math.min(capacity[parent.get(p)][p] - flow[parent.get(p)][p], amount);
sb.append(p + "-");
}
sb.append(source);
for (int p = sink; p != source; p = parent.get(p)) {
flow[parent.get(p)][p] += amount;
flow[p][parent.get(p)] -= amount;
}
totalFlow += amount;
printer += sb.reverse() + " / max flow : " + totalFlow;
System.out.println(printer);
}
return totalFlow;
}
}

View File

@ -0,0 +1,55 @@
package DynamicProgramming;
import java.util.Scanner;
/**
* Program to implement Kadanes Algorithm to
* calculate maximum contiguous subarray sum of an array
* Time Complexity: O(n)
*
* @author Nishita Aggarwal
*/
public class KadaneAlgorithm {
/**
* This method implements Kadane's Algorithm
*
* @param arr The input array
* @return The maximum contiguous subarray sum of the array
*/
static int largestContiguousSum(int arr[]) {
int i, len = arr.length, cursum = 0, maxsum = Integer.MIN_VALUE;
if (len == 0) //empty array
return 0;
for (i = 0; i < len; i++) {
cursum += arr[i];
if (cursum > maxsum) {
maxsum = cursum;
}
if (cursum <= 0) {
cursum = 0;
}
}
return maxsum;
}
/**
* Main method
*
* @param args Command line arguments
*/
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n, arr[], i;
n = sc.nextInt();
arr = new int[n];
for (i = 0; i < n; i++) {
arr[i] = sc.nextInt();
}
int maxContSum = largestContiguousSum(arr);
System.out.println(maxContSum);
sc.close();
}
}

View File

@ -0,0 +1,37 @@
package DynamicProgramming;
/**
* A DynamicProgramming based solution for 0-1 Knapsack problem
*/
public class Knapsack {
private static int knapSack(int W, int wt[], int val[], int n) {
int i, w;
int rv[][] = new int[n + 1][W + 1]; //rv means return value
// Build table rv[][] in bottom up manner
for (i = 0; i <= n; i++) {
for (w = 0; w <= W; w++) {
if (i == 0 || w == 0)
rv[i][w] = 0;
else if (wt[i - 1] <= w)
rv[i][w] = Math.max(val[i - 1] + rv[i - 1][w - wt[i - 1]], rv[i - 1][w]);
else
rv[i][w] = rv[i - 1][w];
}
}
return rv[n][W];
}
// Driver program to test above function
public static void main(String args[]) {
int val[] = new int[]{50, 100, 130};
int wt[] = new int[]{10, 20, 40};
int W = 50;
int n = val.length;
System.out.println(knapSack(W, wt, val, n));
}
}

View File

@ -0,0 +1,56 @@
package DynamicProgramming;
/**
* @author Kshitij VERMA (github.com/kv19971)
* LEVENSHTEIN DISTANCE dyamic programming implementation to show the difference between two strings (https://en.wikipedia.org/wiki/Levenshtein_distance)
*/
public class LevenshteinDistance {
private static int minimum(int a, int b, int c) {
if (a < b && a < c) {
return a;
} else if (b < a && b < c) {
return b;
} else {
return c;
}
}
private static int calculate_distance(String a, String b) {
int len_a = a.length() + 1;
int len_b = b.length() + 1;
int[][] distance_mat = new int[len_a][len_b];
for (int i = 0; i < len_a; i++) {
distance_mat[i][0] = i;
}
for (int j = 0; j < len_b; j++) {
distance_mat[0][j] = j;
}
for (int i = 0; i < len_a; i++) {
for (int j = 0; j < len_b; j++) {
int cost;
if (a.charAt(i) == b.charAt(j)) {
cost = 0;
} else {
cost = 1;
}
distance_mat[i][j] = minimum(distance_mat[i - 1][j], distance_mat[i - 1][j - 1], distance_mat[i][j - 1]) + cost;
}
}
return distance_mat[len_a - 1][len_b - 1];
}
public static void main(String[] args) {
String a = ""; // enter your string here
String b = ""; // enter your string here
System.out.print("Levenshtein distance between " + a + " and " + b + " is: ");
System.out.println(calculate_distance(a, b));
}
}

View File

@ -0,0 +1,68 @@
package DynamicProgramming;
class LongestCommonSubsequence {
public static String getLCS(String str1, String str2) {
//At least one string is null
if (str1 == null || str2 == null)
return null;
//At least one string is empty
if (str1.length() == 0 || str2.length() == 0)
return "";
String[] arr1 = str1.split("");
String[] arr2 = str2.split("");
//lcsMatrix[i][j] = LCS of first i elements of arr1 and first j characters of arr2
int[][] lcsMatrix = new int[arr1.length + 1][arr2.length + 1];
for (int i = 0; i < arr1.length + 1; i++)
lcsMatrix[i][0] = 0;
for (int j = 1; j < arr2.length + 1; j++)
lcsMatrix[0][j] = 0;
for (int i = 1; i < arr1.length + 1; i++) {
for (int j = 1; j < arr2.length + 1; j++) {
if (arr1[i - 1].equals(arr2[j - 1])) {
lcsMatrix[i][j] = lcsMatrix[i - 1][j - 1] + 1;
} else {
lcsMatrix[i][j] = lcsMatrix[i - 1][j] > lcsMatrix[i][j - 1] ? lcsMatrix[i - 1][j] : lcsMatrix[i][j - 1];
}
}
}
return lcsString(str1, str2, lcsMatrix);
}
public static String lcsString(String str1, String str2, int[][] lcsMatrix) {
StringBuilder lcs = new StringBuilder();
int i = str1.length(),
j = str2.length();
while (i > 0 && j > 0) {
if (str1.charAt(i - 1) == str2.charAt(j - 1)) {
lcs.append(str1.charAt(i - 1));
i--;
j--;
} else if (lcsMatrix[i - 1][j] > lcsMatrix[i][j - 1]) {
i--;
} else {
j--;
}
}
return lcs.reverse().toString();
}
public static void main(String[] args) {
String str1 = "DSGSHSRGSRHTRD";
String str2 = "DATRGAGTSHS";
String lcs = getLCS(str1, str2);
//Print LCS
if (lcs != null) {
System.out.println("String 1: " + str1);
System.out.println("String 2: " + str2);
System.out.println("LCS: " + lcs);
System.out.println("LCS length: " + lcs.length());
}
}
}

View File

@ -0,0 +1,64 @@
package DynamicProgramming;
import java.util.Scanner;
/**
* @author Afrizal Fikri (https://github.com/icalF)
*/
public class LongestIncreasingSubsequence {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int ar[] = new int[n];
for (int i = 0; i < n; i++) {
ar[i] = sc.nextInt();
}
System.out.println(LIS(ar));
}
private static int upperBound(int[] ar, int l, int r, int key) {
while (l < r - 1) {
int m = (l + r) / 2;
if (ar[m] >= key)
r = m;
else
l = m;
}
return r;
}
private static int LIS(int[] array) {
int N = array.length;
if (N == 0)
return 0;
int[] tail = new int[N];
// always points empty slot in tail
int length = 1;
tail[0] = array[0];
for (int i = 1; i < N; i++) {
// new smallest value
if (array[i] < tail[0])
tail[0] = array[i];
// array[i] extends largest subsequence
else if (array[i] > tail[length - 1])
tail[length++] = array[i];
// array[i] will become end candidate of an existing subsequence or
// Throw away larger elements in all LIS, to make room for upcoming grater elements than array[i]
// (and also, array[i] would have already appeared in one of LIS, identify the location and replace it)
else
tail[upperBound(tail, -1, length - 1, array[i])] = array[i];
}
return length;
}
}

View File

@ -0,0 +1,61 @@
package DynamicProgramming;
import java.util.Scanner;
/**
* Given a string containing just the characters '(' and ')', find the length of
* the longest valid (well-formed) parentheses substring.
*
* @author Libin Yang (https://github.com/yanglbme)
* @since 2018/10/5
*/
public class LongestValidParentheses {
public static int getLongestValidParentheses(String s) {
if (s == null || s.length() < 2) {
return 0;
}
char[] chars = s.toCharArray();
int n = chars.length;
int[] res = new int[n];
res[0] = 0;
res[1] = chars[1] == ')' && chars[0] == '(' ? 2 : 0;
int max = res[1];
for (int i = 2; i < n; ++i) {
if (chars[i] == ')') {
if (chars[i - 1] == '(') {
res[i] = res[i - 2] + 2;
} else {
int index = i - res[i - 1] - 1;
if (index >= 0 && chars[index] == '(') {
// ()(())
res[i] = res[i - 1] + 2 + (index - 1 >= 0 ? res[index - 1] : 0);
}
}
}
max = Math.max(max, res[i]);
}
return max;
}
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
while (true) {
String str = sc.nextLine();
if ("quit".equals(str)) {
break;
}
int len = getLongestValidParentheses(str);
System.out.println(len);
}
sc.close();
}
}

View File

@ -0,0 +1,136 @@
package DynamicProgramming;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Scanner;
public class MatrixChainMultiplication {
private static Scanner scan = new Scanner(System.in);
private static ArrayList<Matrix> mArray = new ArrayList<>();
private static int size;
private static int[][] m;
private static int[][] s;
private static int[] p;
public static void main(String[] args) {
int count = 1;
while (true) {
String[] mSize = input("input size of matrix A(" + count + ") ( ex. 10 20 ) : ");
int col = Integer.parseInt(mSize[0]);
if (col == 0) break;
int row = Integer.parseInt(mSize[1]);
Matrix matrix = new Matrix(count, col, row);
mArray.add(matrix);
count++;
}
for (Matrix m : mArray) {
System.out.format("A(%d) = %2d x %2d\n", m.count(), m.col(), m.row());
}
size = mArray.size();
m = new int[size + 1][size + 1];
s = new int[size + 1][size + 1];
p = new int[size + 1];
for (int i = 0; i < size + 1; i++) {
Arrays.fill(m[i], -1);
Arrays.fill(s[i], -1);
}
for (int i = 0; i < p.length; i++) {
p[i] = i == 0 ? mArray.get(i).col() : mArray.get(i - 1).row();
}
matrixChainOrder();
for (int i = 0; i < size; i++) {
System.out.print("-------");
}
System.out.println();
printArray(m);
for (int i = 0; i < size; i++) {
System.out.print("-------");
}
System.out.println();
printArray(s);
for (int i = 0; i < size; i++) {
System.out.print("-------");
}
System.out.println();
System.out.println("Optimal solution : " + m[1][size]);
System.out.print("Optimal parens : ");
printOptimalParens(1, size);
}
private static void printOptimalParens(int i, int j) {
if (i == j) {
System.out.print("A" + i);
} else {
System.out.print("(");
printOptimalParens(i, s[i][j]);
printOptimalParens(s[i][j] + 1, j);
System.out.print(")");
}
}
private static void printArray(int[][] array) {
for (int i = 1; i < size + 1; i++) {
for (int j = 1; j < size + 1; j++) {
System.out.print(String.format("%7d", array[i][j]));
}
System.out.println();
}
}
private static void matrixChainOrder() {
for (int i = 1; i < size + 1; i++) {
m[i][i] = 0;
}
for (int l = 2; l < size + 1; l++) {
for (int i = 1; i < size - l + 2; i++) {
int j = i + l - 1;
m[i][j] = Integer.MAX_VALUE;
for (int k = i; k < j; k++) {
int q = m[i][k] + m[k + 1][j] + p[i - 1] * p[k] * p[j];
if (q < m[i][j]) {
m[i][j] = q;
s[i][j] = k;
}
}
}
}
}
private static String[] input(String string) {
System.out.print(string);
return (scan.nextLine().split(" "));
}
}
class Matrix {
private int count;
private int col;
private int row;
Matrix(int count, int col, int row) {
this.count = count;
this.col = col;
this.row = row;
}
int count() {
return count;
}
int col() {
return col;
}
int row() {
return row;
}
}

View File

@ -0,0 +1,32 @@
package DynamicProgramming;
/**
* A DynamicProgramming solution for Rod cutting problem
* Returns the best obtainable price for a rod of
* length n and price[] as prices of different pieces
*/
public class RodCutting {
private static int cutRod(int[] price, int n) {
int val[] = new int[n + 1];
val[0] = 0;
for (int i = 1; i <= n; i++) {
int max_val = Integer.MIN_VALUE;
for (int j = 0; j < i; j++)
max_val = Math.max(max_val, price[j] + val[i - j - 1]);
val[i] = max_val;
}
return val[n];
}
// main function to test
public static void main(String args[]) {
int[] arr = new int[]{2, 5, 13, 19, 20};
int size = arr.length;
System.out.println("Maximum Obtainable Value is " +
cutRod(arr, size));
}
}