docs: update the whole repository

* fix some bugs
* delete duplicate files
* format code
This commit is contained in:
yanglbme
2019-05-09 19:32:54 +08:00
parent 163db8521a
commit 29948363da
368 changed files with 4372 additions and 30841 deletions

View File

@ -1,19 +1,21 @@
package DataStructures.Trees;
public class AVLTree {
private Node root;
private class Node {
private int key;
private int balance;
private int height;
private Node left, right, parent;
Node(int k, Node p) {
key = k;
parent = p;
}
}
public boolean insert(int key) {
if (root == null)
root = new Node(key, null);
@ -23,12 +25,12 @@ public class AVLTree {
while (true) {
if (n.key == key)
return false;
parent = n;
boolean goLeft = n.key > key;
n = goLeft ? n.left : n.right;
if (n == null) {
if (goLeft) {
parent.left = new Node(key, parent);
@ -42,38 +44,38 @@ public class AVLTree {
}
return true;
}
private void delete(Node node){
if(node.left == null && node.right == null){
if(node.parent == null) root = null;
else{
private void delete(Node node) {
if (node.left == null && node.right == null) {
if (node.parent == null) root = null;
else {
Node parent = node.parent;
if(parent.left == node){
if (parent.left == node) {
parent.left = null;
}else parent.right = null;
} else parent.right = null;
rebalance(parent);
}
return;
}
if(node.left!=null){
if (node.left != null) {
Node child = node.left;
while (child.right!=null) child = child.right;
while (child.right != null) child = child.right;
node.key = child.key;
delete(child);
}else{
} else {
Node child = node.right;
while (child.left!=null) child = child.left;
while (child.left != null) child = child.left;
node.key = child.key;
delete(child);
}
}
public void delete(int delKey) {
if (root == null)
return;
Node node = root;
Node child = root;
while (child != null) {
node = child;
child = delKey >= node.key ? node.right : node.left;
@ -83,43 +85,43 @@ public class AVLTree {
}
}
}
private void rebalance(Node n) {
setBalance(n);
if (n.balance == -2) {
if (height(n.left.left) >= height(n.left.right))
n = rotateRight(n);
else
n = rotateLeftThenRight(n);
} else if (n.balance == 2) {
if (height(n.right.right) >= height(n.right.left))
n = rotateLeft(n);
else
n = rotateRightThenLeft(n);
}
if (n.parent != null) {
rebalance(n.parent);
} else {
root = n;
}
}
private Node rotateLeft(Node a) {
Node b = a.right;
b.parent = a.parent;
a.right = b.left;
if (a.right != null)
a.right.parent = a;
b.left = a;
a.parent = b;
if (b.parent != null) {
if (b.parent.right == a) {
b.parent.right = b;
@ -127,25 +129,25 @@ public class AVLTree {
b.parent.left = b;
}
}
setBalance(a, b);
return b;
}
private Node rotateRight(Node a) {
Node b = a.left;
b.parent = a.parent;
a.left = b.right;
if (a.left != null)
a.left.parent = a;
b.right = a;
a.parent = b;
if (b.parent != null) {
if (b.parent.right == a) {
b.parent.right = b;
@ -153,39 +155,39 @@ public class AVLTree {
b.parent.left = b;
}
}
setBalance(a, b);
return b;
}
private Node rotateLeftThenRight(Node n) {
n.left = rotateLeft(n.left);
return rotateRight(n);
}
private Node rotateRightThenLeft(Node n) {
n.right = rotateRight(n.right);
return rotateLeft(n);
}
private int height(Node n) {
if (n == null)
return -1;
return n.height;
}
private void setBalance(Node... nodes) {
for (Node n : nodes) {
reheight(n);
n.balance = height(n.right) - height(n.left);
}
}
public void printBalance() {
printBalance(root);
}
private void printBalance(Node n) {
if (n != null) {
printBalance(n.left);
@ -193,20 +195,20 @@ public class AVLTree {
printBalance(n.right);
}
}
private void reheight(Node node){
if(node!=null){
node.height=1 + Math.max(height(node.left), height(node.right));
private void reheight(Node node) {
if (node != null) {
node.height = 1 + Math.max(height(node.left), height(node.right));
}
}
public static void main(String[] args) {
AVLTree tree = new AVLTree();
System.out.println("Inserting values 1 to 10");
for (int i = 1; i < 10; i++)
tree.insert(i);
System.out.print("Printing balance: ");
tree.printBalance();
}

View File

@ -1,272 +1,275 @@
package DataStructures.Trees;
/**
* This entire class is used to build a Binary Tree data structure.
* There is the Node Class and the Tree Class, both explained below.
*
* @author Unknown
*
*/
* This entire class is used to build a Binary Tree data structure.
* There is the Node Class and the Tree Class, both explained below.
*/
/**
* This class implements the nodes that will go on the Binary Tree.
* They consist of the data in them, the node to the left, the node
* to the right, and the parent from which they came from.
*
* @author Unknown
*
*/
class Node{
/** Data for the node */
public int data;
/** The Node to the left of this one */
public Node left;
/** The Node to the right of this one */
public Node right;
/** The parent of this node */
public Node parent;
* A binary tree is a data structure in which an element
* has two successors(children). The left child is usually
* smaller than the parent, and the right child is usually
* bigger.
*
* @author Unknown
*
*/
public class BinaryTree {
/**
* Constructor of Node
*
* @param value Value to put in the node
*/
public Node(int value){
data = value;
left = null;
right = null;
parent = null;
}
/**
* This class implements the nodes that will go on the Binary Tree.
* They consist of the data in them, the node to the left, the node
* to the right, and the parent from which they came from.
*
* @author Unknown
*
*/
class Node {
/** Data for the node */
public int data;
/** The Node to the left of this one */
public Node left;
/** The Node to the right of this one */
public Node right;
/** The parent of this node */
public Node parent;
/**
* Constructor of Node
*
* @param value Value to put in the node
*/
public Node(int value) {
data = value;
left = null;
right = null;
parent = null;
}
}
/** The root of the Binary Tree */
private Node root;
/**
* Constructor
*/
public BinaryTree() {
root = null;
}
/**
* Method to find a Node with a certain value
*
* @param key Value being looked for
* @return The node if it finds it, otherwise returns the parent
*/
public Node find(int key) {
Node current = root;
while (current != null) {
if (key < current.data) {
if (current.left == null)
return current; //The key isn't exist, returns the parent
current = current.left;
} else if (key > current.data) {
if (current.right == null)
return current;
current = current.right;
} else { // If you find the value return it
return current;
}
}
return null;
}
/**
* Inserts certain value into the Binary Tree
*
* @param value Value to be inserted
*/
public void put(int value) {
Node newNode = new Node(value);
if (root == null)
root = newNode;
else {
//This will return the soon to be parent of the value you're inserting
Node parent = find(value);
//This if/else assigns the new node to be either the left or right child of the parent
if (value < parent.data) {
parent.left = newNode;
parent.left.parent = parent;
return;
} else {
parent.right = newNode;
parent.right.parent = parent;
return;
}
}
}
/**
* Deletes a given value from the Binary Tree
*
* @param value Value to be deleted
* @return If the value was deleted
*/
public boolean remove(int value) {
//temp is the node to be deleted
Node temp = find(value);
//If the value doesn't exist
if (temp.data != value)
return false;
//No children
if (temp.right == null && temp.left == null) {
if (temp == root)
root = null;
//This if/else assigns the new node to be either the left or right child of the parent
else if (temp.parent.data < temp.data)
temp.parent.right = null;
else
temp.parent.left = null;
return true;
}
//Two children
else if (temp.left != null && temp.right != null) {
Node successor = findSuccessor(temp);
//The left tree of temp is made the left tree of the successor
successor.left = temp.left;
successor.left.parent = successor;
//If the successor has a right child, the child's grandparent is it's new parent
if (successor.right != null && successor.parent != temp) {
successor.right.parent = successor.parent;
successor.parent.left = successor.right;
successor.right = temp.right;
successor.right.parent = successor;
}
if (temp == root) {
successor.parent = null;
root = successor;
return true;
}
//If you're not deleting the root
else {
successor.parent = temp.parent;
//This if/else assigns the new node to be either the left or right child of the parent
if (temp.parent.data < temp.data)
temp.parent.right = successor;
else
temp.parent.left = successor;
return true;
}
}
//One child
else {
//If it has a right child
if (temp.right != null) {
if (temp == root) {
root = temp.right;
return true;
}
temp.right.parent = temp.parent;
//Assigns temp to left or right child
if (temp.data < temp.parent.data)
temp.parent.left = temp.right;
else
temp.parent.right = temp.right;
return true;
}
//If it has a left child
else {
if (temp == root) {
root = temp.left;
return true;
}
temp.left.parent = temp.parent;
//Assigns temp to left or right side
if (temp.data < temp.parent.data)
temp.parent.left = temp.left;
else
temp.parent.right = temp.left;
return true;
}
}
}
/**
* This method finds the Successor to the Node given.
* Move right once and go left down the tree as far as you can
*
* @param n Node that you want to find the Successor of
* @return The Successor of the node
*/
public Node findSuccessor(Node n) {
if (n.right == null)
return n;
Node current = n.right;
Node parent = n.right;
while (current != null) {
parent = current;
current = current.left;
}
return parent;
}
/**
* Returns the root of the Binary Tree
*
* @return the root of the Binary Tree
*/
public Node getRoot() {
return root;
}
/**
* Prints leftChild - root - rightChild
*
* @param localRoot The local root of the binary tree
*/
public void inOrder(Node localRoot) {
if (localRoot != null) {
inOrder(localRoot.left);
System.out.print(localRoot.data + " ");
inOrder(localRoot.right);
}
}
/**
* Prints root - leftChild - rightChild
*
* @param localRoot The local root of the binary tree
*/
public void preOrder(Node localRoot) {
if (localRoot != null) {
System.out.print(localRoot.data + " ");
preOrder(localRoot.left);
preOrder(localRoot.right);
}
}
/**
* Prints rightChild - leftChild - root
*
* @param localRoot The local root of the binary tree
*/
public void postOrder(Node localRoot) {
if (localRoot != null) {
postOrder(localRoot.left);
postOrder(localRoot.right);
System.out.print(localRoot.data + " ");
}
}
}
/**
* A binary tree is a data structure in which an element
* has two successors(children). The left child is usually
* smaller than the parent, and the right child is usually
* bigger.
*
* @author Unknown
*
*/
class Tree{
/** The root of the Binary Tree */
private Node root;
/**
* Constructor
*/
public Tree(){
root = null;
}
/**
* Method to find a Node with a certain value
*
* @param key Value being looked for
* @return The node if it finds it, otherwise returns the parent
*/
public Node find(int key) {
Node current = root;
while (current != null) {
if(key < current.data) {
if(current.left == null)
return current; //The key isn't exist, returns the parent
current = current.left;
} else if(key > current.data) {
if(current.right == null)
return current;
current = current.right;
} else { // If you find the value return it
return current;
}
}
return null;
}
/**
* Inserts certain value into the Binary Tree
*
* @param value Value to be inserted
*/
public void put(int value){
Node newNode = new Node(value);
if(root == null)
root = newNode;
else{
//This will return the soon to be parent of the value you're inserting
Node parent = find(value);
//This if/else assigns the new node to be either the left or right child of the parent
if(value < parent.data){
parent.left = newNode;
parent.left.parent = parent;
return;
}
else{
parent.right = newNode;
parent.right.parent = parent;
return;
}
}
}
/**
* Deletes a given value from the Binary Tree
*
* @param value Value to be deleted
* @return If the value was deleted
*/
public boolean remove(int value){
//temp is the node to be deleted
Node temp = find(value);
//If the value doesn't exist
if(temp.data != value)
return false;
//No children
if(temp.right == null && temp.left == null){
if(temp == root)
root = null;
//This if/else assigns the new node to be either the left or right child of the parent
else if(temp.parent.data < temp.data)
temp.parent.right = null;
else
temp.parent.left = null;
return true;
}
//Two children
else if(temp.left != null && temp.right != null){
Node successor = findSuccessor(temp);
//The left tree of temp is made the left tree of the successor
successor.left = temp.left;
successor.left.parent = successor;
//If the successor has a right child, the child's grandparent is it's new parent
if(successor.right != null && successor.parent != temp){
successor.right.parent = successor.parent;
successor.parent.left = successor.right;
successor.right = temp.right;
successor.right.parent = successor;
}
if(temp == root){
successor.parent = null;
root = successor;
return true;
}
//If you're not deleting the root
else{
successor.parent = temp.parent;
//This if/else assigns the new node to be either the left or right child of the parent
if(temp.parent.data < temp.data)
temp.parent.right = successor;
else
temp.parent.left = successor;
return true;
}
}
//One child
else{
//If it has a right child
if(temp.right != null){
if(temp == root){
root = temp.right; return true;}
temp.right.parent = temp.parent;
//Assigns temp to left or right child
if(temp.data < temp.parent.data)
temp.parent.left = temp.right;
else
temp.parent.right = temp.right;
return true;
}
//If it has a left child
else{
if(temp == root){
root = temp.left; return true;}
temp.left.parent = temp.parent;
//Assigns temp to left or right side
if(temp.data < temp.parent.data)
temp.parent.left = temp.left;
else
temp.parent.right = temp.left;
return true;
}
}
}
/**
* This method finds the Successor to the Node given.
* Move right once and go left down the tree as far as you can
*
* @param n Node that you want to find the Successor of
* @return The Successor of the node
*/
public Node findSuccessor(Node n){
if(n.right == null)
return n;
Node current = n.right;
Node parent = n.right;
while(current != null){
parent = current;
current = current.left;
}
return parent;
}
/**
* Returns the root of the Binary Tree
*
* @return the root of the Binary Tree
*/
public Node getRoot(){
return root;
}
/**
* Prints leftChild - root - rightChild
*
* @param localRoot The local root of the binary tree
*/
public void inOrder(Node localRoot){
if(localRoot != null){
inOrder(localRoot.left);
System.out.print(localRoot.data + " ");
inOrder(localRoot.right);
}
}
/**
* Prints root - leftChild - rightChild
*
* @param localRoot The local root of the binary tree
*/
public void preOrder(Node localRoot){
if(localRoot != null){
System.out.print(localRoot.data + " ");
preOrder(localRoot.left);
preOrder(localRoot.right);
}
}
/**
* Prints rightChild - leftChild - root
*
* @param localRoot The local root of the binary tree
*/
public void postOrder(Node localRoot){
if(localRoot != null){
postOrder(localRoot.left);
postOrder(localRoot.right);
System.out.print(localRoot.data + " ");
}
}
}

View File

@ -1,100 +0,0 @@
/**
*
* @author Varun Upadhyay (https://github.com/varunu28)
*
*/
import java.util.LinkedList;
public class FindHeightOfTree {
// Driver Program
public static void main(String[] args) {
Node tree = new Node(5);
tree.insert(3);
tree.insert(7);
tree.insert(1);
tree.insert(-1);
tree.insert(29);
tree.insert(93);
tree.insert(6);
tree.insert(0);
tree.insert(-5);
tree.insert(-6);
tree.insert(-8);
tree.insert(-1);
// A level order representation of the tree
tree.printLevelOrder();
System.out.println();
System.out.println("Height of the tree is: " + tree.findHeight());
}
}
/**
* The Node class which initializes a Node of a tree
* printLevelOrder: ROOT -> ROOT's CHILDREN -> ROOT's CHILDREN's CHILDREN -> etc
* findHeight: Returns the height of the tree i.e. the number of links between root and farthest leaf
*/
class Node {
Node left, right;
int data;
public Node(int data) {
this.data = data;
}
public void insert (int value) {
if (value < data) {
if (left == null) {
left = new Node(value);
}
else {
left.insert(value);
}
}
else {
if (right == null) {
right = new Node(value);
}
else {
right.insert(value);
}
}
}
public void printLevelOrder() {
LinkedList<Node> queue = new LinkedList<>();
queue.add(this);
while(!queue.isEmpty()) {
Node n = queue.poll();
System.out.print(n.data + " ");
if (n.left != null) {
queue.add(n.left);
}
if (n.right != null) {
queue.add(n.right);
}
}
}
public int findHeight() {
return findHeight(this);
}
private int findHeight(Node root) {
if (root.left == null && root.right == null) {
return 0;
}
else if (root.left != null && root.right != null) {
return 1 + Math.max(findHeight(root.left), findHeight(root.right));
}
else if (root.left == null && root.right != null) {
return 1 + findHeight(root.right);
}
else {
return 1 + findHeight(root.left);
}
}
}

View File

@ -1,3 +1,5 @@
package DataStructures.Trees;
import java.util.ArrayList;
import java.util.LinkedList;
import java.util.Scanner;
@ -224,3 +226,4 @@ public class GenericTree {
}
}
}

View File

@ -1,74 +1,55 @@
class Node
{
int data;
Node left, right;
public Node(int item)
{
data = item;
left = right = null;
package DataStructures.Trees;
public class LevelOrderTraversal {
class Node {
int data;
Node left, right;
public Node(int item) {
data = item;
left = right = null;
}
}
}
public class LevelOrderTraversal
{
// Root of the Binary Tree
Node root;
public LevelOrderTraversal()
{
public LevelOrderTraversal() {
root = null;
}
/* function to print level order traversal of tree*/
void printLevelOrder()
{
void printLevelOrder() {
int h = height(root);
int i;
for (i=1; i<=h; i++)
for (i = 1; i <= h; i++)
printGivenLevel(root, i);
}
/* Compute the "height" of a tree -- the number of
nodes along the longest path from the root node
down to the farthest leaf node.*/
int height(Node root)
{
int height(Node root) {
if (root == null)
return 0;
else
{
return 0;
else {
/**
* Return the height of larger subtree
*/
return Math.max(height(root.left),height(root.right)) + 1;
return Math.max(height(root.left), height(root.right)) + 1;
}
}
/* Print nodes at the given level */
void printGivenLevel (Node root ,int level)
{
void printGivenLevel(Node root, int level) {
if (root == null)
return;
if (level == 1)
System.out.print(root.data + " ");
else if (level > 1)
{
printGivenLevel(root.left, level-1);
printGivenLevel(root.right, level-1);
else if (level > 1) {
printGivenLevel(root.left, level - 1);
printGivenLevel(root.right, level - 1);
}
}
/* Driver program to test above functions */
public static void main(String args[])
{
LevelOrderTraversal tree = new LevelOrderTraversal();
tree.root= new Node(1);
tree.root.left= new Node(2);
tree.root.right= new Node(3);
tree.root.left.left= new Node(4);
tree.root.left.right= new Node(5);
System.out.println("Level order traversal of binary tree is ");
tree.printLevelOrder();
}
}

View File

@ -1,62 +1,48 @@
package DataStructures.Trees;
import java.util.Queue;
import java.util.LinkedList;
/* Class to represent Tree node */
class Node {
int data;
Node left, right;
public Node(int item) {
data = item;
left = null;
right = null;
}
}
/* Class to print Level Order Traversal */
public class LevelOrderTraversalQueue {
/* Class to represent Tree node */
class Node {
int data;
Node left, right;
public Node(int item) {
data = item;
left = null;
right = null;
}
}
Node root;
/* Given a binary tree. Print its nodes in level order
using array for implementing queue */
void printLevelOrder()
{
void printLevelOrder() {
Queue<Node> queue = new LinkedList<Node>();
queue.add(root);
while (!queue.isEmpty())
{
while (!queue.isEmpty()) {
/* poll() removes the present head.
For more information on poll() visit
http://www.tutorialspoint.com/java/util/linkedlist_poll.htm */
Node tempNode = queue.poll();
System.out.print(tempNode.data + " ");
/*Enqueue left child */
if (tempNode.left != null) {
queue.add(tempNode.left);
}
/*Enqueue right child */
if (tempNode.right != null) {
queue.add(tempNode.right);
}
}
}
public static void main(String args[])
{
/* creating a binary tree and entering
the nodes */
LevelOrderTraversalQueue tree_level = new LevelOrderTraversalQueue();
tree_level.root = new Node(1);
tree_level.root.left = new Node(2);
tree_level.root.right = new Node(3);
tree_level.root.left.left = new Node(4);
tree_level.root.left.right = new Node(5);
System.out.println("Level order traversal of binary tree is - ");
tree_level.printLevelOrder();
}
}

View File

@ -1,87 +1,88 @@
// Java program to print top view of Binary tree
import java.util.*;
package DataStructures.Trees;// Java program to print top view of Binary tree
import java.util.HashSet;
import java.util.LinkedList;
import java.util.Queue;
// Class for a tree node
class TreeNode
{
class TreeNode {
// Members
int key;
TreeNode left, right;
// Constructor
public TreeNode(int key)
{
public TreeNode(int key) {
this.key = key;
left = right = null;
}
}
// A class to represent a queue item. The queue is used to do Level
// order traversal. Every Queue item contains node and horizontal
// distance of node from root
class QItem
{
TreeNode node;
int hd;
public QItem(TreeNode n, int h)
{
class QItem {
TreeNode node;
int hd;
public QItem(TreeNode n, int h) {
node = n;
hd = h;
}
}
}
// Class for a Binary Tree
class Tree
{
class Tree {
TreeNode root;
// Constructors
public Tree() { root = null; }
public Tree(TreeNode n) { root = n; }
public Tree() {
root = null;
}
public Tree(TreeNode n) {
root = n;
}
// This method prints nodes in top view of binary tree
public void printTopView()
{
public void printTopView() {
// base case
if (root == null) { return; }
if (root == null) {
return;
}
// Creates an empty hashset
HashSet<Integer> set = new HashSet<>();
// Create a queue and add root to it
Queue<QItem> Q = new LinkedList<QItem>();
Q.add(new QItem(root, 0)); // Horizontal distance of root is 0
// Standard BFS or level order traversal loop
while (!Q.isEmpty())
{
while (!Q.isEmpty()) {
// Remove the front item and get its details
QItem qi = Q.remove();
int hd = qi.hd;
TreeNode n = qi.node;
// If this is the first node at its horizontal distance,
// then this node is in top view
if (!set.contains(hd))
{
if (!set.contains(hd)) {
set.add(hd);
System.out.print(n.key + " ");
}
// Enqueue left and right children of current node
if (n.left != null)
Q.add(new QItem(n.left, hd-1));
Q.add(new QItem(n.left, hd - 1));
if (n.right != null)
Q.add(new QItem(n.right, hd+1));
Q.add(new QItem(n.right, hd + 1));
}
}
}
// Driver class to test above methods
public class PrintTopViewofTree
{
public static void main(String[] args)
{
public class PrintTopViewofTree {
public static void main(String[] args) {
/* Create following Binary Tree
1
/ \

View File

@ -1,330 +1,333 @@
package DataStructures.Trees;
import java.util.Scanner;
/**
*
* @author jack870131
*/
public class RedBlackBST {
private final int R = 0;
private final int B = 1;
private final int R = 0;
private final int B = 1;
private class Node {
private class Node {
int key = -1, color = B;
Node left = nil, right = nil, p = nil;
int key = -1, color = B;
Node left = nil, right = nil, p = nil;
Node(int key) {
this.key = key;
}
}
Node(int key) {
this.key = key;
}
}
private final Node nil = new Node(-1);
private Node root = nil;
private final Node nil = new Node(-1);
private Node root = nil;
public void printTree(Node node) {
if (node == nil) {
return;
}
printTree(node.left);
System.out.print(((node.color == R) ? " R " : " B ") + "Key: " + node.key + " Parent: " + node.p.key + "\n");
printTree(node.right);
}
public void printTree(Node node) {
if (node == nil) {
return;
}
printTree(node.left);
System.out.print(((node.color == R) ? " R " : " B ") + "Key: " + node.key + " Parent: " + node.p.key + "\n");
printTree(node.right);
}
public void printTreepre(Node node) {
if (node == nil) {
return;
}
System.out.print(((node.color == R) ? " R " : " B ") + "Key: " + node.key + " Parent: " + node.p.key + "\n");
printTree(node.left);
printTree(node.right);
}
public void printTreepre(Node node) {
if (node == nil) {
return;
}
System.out.print(((node.color == R) ? " R " : " B ") + "Key: " + node.key + " Parent: " + node.p.key + "\n");
printTree(node.left);
printTree(node.right);
}
private Node findNode(Node findNode, Node node) {
if (root == nil) {
return null;
}
if (findNode.key < node.key) {
if (node.left != nil) {
return findNode(findNode, node.left);
}
} else if (findNode.key > node.key) {
if (node.right != nil) {
return findNode(findNode, node.right);
}
} else if (findNode.key == node.key) {
return node;
}
return null;
}
private Node findNode(Node findNode, Node node) {
if (root == nil) {
return null;
}
if (findNode.key < node.key) {
if (node.left != nil) {
return findNode(findNode, node.left);
}
} else if (findNode.key > node.key) {
if (node.right != nil) {
return findNode(findNode, node.right);
}
} else if (findNode.key == node.key) {
return node;
}
return null;
}
private void insert(Node node) {
Node temp = root;
if (root == nil) {
root = node;
node.color = B;
node.p = nil;
} else {
node.color = R;
while (true) {
if (node.key < temp.key) {
if (temp.left == nil) {
temp.left = node;
node.p = temp;
break;
} else {
temp = temp.left;
}
} else if (node.key >= temp.key) {
if (temp.right == nil) {
temp.right = node;
node.p = temp;
break;
} else {
temp = temp.right;
}
}
}
fixTree(node);
}
}
private void insert(Node node) {
Node temp = root;
if (root == nil) {
root = node;
node.color = B;
node.p = nil;
} else {
node.color = R;
while (true) {
if (node.key < temp.key) {
if (temp.left == nil) {
temp.left = node;
node.p = temp;
break;
} else {
temp = temp.left;
}
} else if (node.key >= temp.key) {
if (temp.right == nil) {
temp.right = node;
node.p = temp;
break;
} else {
temp = temp.right;
}
}
}
fixTree(node);
}
}
private void fixTree(Node node) {
while (node.p.color == R) {
Node y = nil;
if (node.p == node.p.p.left) {
y = node.p.p.right;
private void fixTree(Node node) {
while (node.p.color == R) {
Node y = nil;
if (node.p == node.p.p.left) {
y = node.p.p.right;
if (y != nil && y.color == R) {
node.p.color = B;
y.color = B;
node.p.p.color = R;
node = node.p.p;
continue;
}
if (node == node.p.right) {
node = node.p;
rotateLeft(node);
}
node.p.color = B;
node.p.p.color = R;
rotateRight(node.p.p);
} else {
y = node.p.p.left;
if (y != nil && y.color == R) {
node.p.color = B;
y.color = B;
node.p.p.color = R;
node = node.p.p;
continue;
}
if (node == node.p.left) {
node = node.p;
rotateRight(node);
}
node.p.color = B;
node.p.p.color = R;
rotateLeft(node.p.p);
}
}
root.color = B;
}
if (y != nil && y.color == R) {
node.p.color = B;
y.color = B;
node.p.p.color = R;
node = node.p.p;
continue;
}
if (node == node.p.right) {
node = node.p;
rotateLeft(node);
}
node.p.color = B;
node.p.p.color = R;
rotateRight(node.p.p);
} else {
y = node.p.p.left;
if (y != nil && y.color == R) {
node.p.color = B;
y.color = B;
node.p.p.color = R;
node = node.p.p;
continue;
}
if (node == node.p.left) {
node = node.p;
rotateRight(node);
}
node.p.color = B;
node.p.p.color = R;
rotateLeft(node.p.p);
}
}
root.color = B;
}
void rotateLeft(Node node) {
if (node.p != nil) {
if (node == node.p.left) {
node.p.left = node.right;
} else {
node.p.right = node.right;
}
node.right.p = node.p;
node.p = node.right;
if (node.right.left != nil) {
node.right.left.p = node;
}
node.right = node.right.left;
node.p.left = node;
} else {
Node right = root.right;
root.right = right.left;
right.left.p = root;
root.p = right;
right.left = root;
right.p = nil;
root = right;
}
}
void rotateLeft(Node node) {
if (node.p != nil) {
if (node == node.p.left) {
node.p.left = node.right;
} else {
node.p.right = node.right;
}
node.right.p = node.p;
node.p = node.right;
if (node.right.left != nil) {
node.right.left.p = node;
}
node.right = node.right.left;
node.p.left = node;
} else {
Node right = root.right;
root.right = right.left;
right.left.p = root;
root.p = right;
right.left = root;
right.p = nil;
root = right;
}
}
void rotateRight(Node node) {
if (node.p != nil) {
if (node == node.p.left) {
node.p.left = node.left;
} else {
node.p.right = node.left;
}
void rotateRight(Node node) {
if (node.p != nil) {
if (node == node.p.left) {
node.p.left = node.left;
} else {
node.p.right = node.left;
}
node.left.p = node.p;
node.p = node.left;
if (node.left.right != nil) {
node.left.right.p = node;
}
node.left = node.left.right;
node.p.right = node;
} else {
Node left = root.left;
root.left = root.left.right;
left.right.p = root;
root.p = left;
left.right = root;
left.p = nil;
root = left;
}
}
node.left.p = node.p;
node.p = node.left;
if (node.left.right != nil) {
node.left.right.p = node;
}
node.left = node.left.right;
node.p.right = node;
} else {
Node left = root.left;
root.left = root.left.right;
left.right.p = root;
root.p = left;
left.right = root;
left.p = nil;
root = left;
}
}
void transplant(Node target, Node with) {
if (target.p == nil) {
root = with;
} else if (target == target.p.left) {
target.p.left = with;
} else
target.p.right = with;
with.p = target.p;
}
void transplant(Node target, Node with) {
if (target.p == nil) {
root = with;
} else if (target == target.p.left) {
target.p.left = with;
} else
target.p.right = with;
with.p = target.p;
}
Node treeMinimum(Node subTreeRoot) {
while (subTreeRoot.left != nil) {
subTreeRoot = subTreeRoot.left;
}
return subTreeRoot;
}
Node treeMinimum(Node subTreeRoot) {
while (subTreeRoot.left != nil) {
subTreeRoot = subTreeRoot.left;
}
return subTreeRoot;
}
boolean delete(Node z) {
if ((z = findNode(z, root)) == null)
return false;
Node x;
Node y = z;
int yorigcolor = y.color;
boolean delete(Node z) {
if ((z = findNode(z, root)) == null)
return false;
Node x;
Node y = z;
int yorigcolor = y.color;
if (z.left == nil) {
x = z.right;
transplant(z, z.right);
} else if (z.right == nil) {
x = z.left;
transplant(z, z.left);
} else {
y = treeMinimum(z.right);
yorigcolor = y.color;
x = y.right;
if (y.p == z)
x.p = y;
else {
transplant(y, y.right);
y.right = z.right;
y.right.p = y;
}
transplant(z, y);
y.left = z.left;
y.left.p = y;
y.color = z.color;
}
if (yorigcolor == B)
deleteFixup(x);
return true;
}
if (z.left == nil) {
x = z.right;
transplant(z, z.right);
} else if (z.right == nil) {
x = z.left;
transplant(z, z.left);
} else {
y = treeMinimum(z.right);
yorigcolor = y.color;
x = y.right;
if (y.p == z)
x.p = y;
else {
transplant(y, y.right);
y.right = z.right;
y.right.p = y;
}
transplant(z, y);
y.left = z.left;
y.left.p = y;
y.color = z.color;
}
if (yorigcolor == B)
deleteFixup(x);
return true;
}
void deleteFixup(Node x) {
while (x != root && x.color == B) {
if (x == x.p.left) {
Node w = x.p.right;
if (w.color == R) {
w.color = B;
x.p.color = R;
rotateLeft(x.p);
w = x.p.right;
}
if (w.left.color == B && w.right.color == B) {
w.color = R;
x = x.p;
continue;
} else if (w.right.color == B) {
w.left.color = B;
w.color = R;
rotateRight(w);
w = x.p.right;
}
if (w.right.color == R) {
w.color = x.p.color;
x.p.color = B;
w.right.color = B;
rotateLeft(x.p);
x = root;
}
} else {
Node w = x.p.left;
if (w.color == R) {
w.color = B;
x.p.color = R;
rotateRight(x.p);
w = x.p.left;
}
if (w.right.color == B && w.left.color == B) {
w.color = R;
x = x.p;
continue;
} else if (w.left.color == B) {
w.right.color = B;
w.color = R;
rotateLeft(w);
w = x.p.left;
}
if (w.left.color == R) {
w.color = x.p.color;
x.p.color = B;
w.left.color = B;
rotateRight(x.p);
x = root;
}
}
}
x.color = B;
}
void deleteFixup(Node x) {
while (x != root && x.color == B) {
if (x == x.p.left) {
Node w = x.p.right;
if (w.color == R) {
w.color = B;
x.p.color = R;
rotateLeft(x.p);
w = x.p.right;
}
if (w.left.color == B && w.right.color == B) {
w.color = R;
x = x.p;
continue;
} else if (w.right.color == B) {
w.left.color = B;
w.color = R;
rotateRight(w);
w = x.p.right;
}
if (w.right.color == R) {
w.color = x.p.color;
x.p.color = B;
w.right.color = B;
rotateLeft(x.p);
x = root;
}
} else {
Node w = x.p.left;
if (w.color == R) {
w.color = B;
x.p.color = R;
rotateRight(x.p);
w = x.p.left;
}
if (w.right.color == B && w.left.color == B) {
w.color = R;
x = x.p;
continue;
} else if (w.left.color == B) {
w.right.color = B;
w.color = R;
rotateLeft(w);
w = x.p.left;
}
if (w.left.color == R) {
w.color = x.p.color;
x.p.color = B;
w.left.color = B;
rotateRight(x.p);
x = root;
}
}
}
x.color = B;
}
public void insertDemo() {
Scanner scan = new Scanner(System.in);
while (true) {
System.out.println("Add items");
public void insertDemo() {
Scanner scan = new Scanner(System.in);
while (true) {
System.out.println("Add items");
int item;
Node node;
int item;
Node node;
item = scan.nextInt();
while (item != -999) {
node = new Node(item);
insert(node);
item = scan.nextInt();
}
printTree(root);
System.out.println("Pre order");
printTreepre(root);
break;
}
}
item = scan.nextInt();
while (item != -999) {
node = new Node(item);
insert(node);
item = scan.nextInt();
}
printTree(root);
System.out.println("Pre order");
printTreepre(root);
break;
}
}
public void deleteDemo() {
Scanner scan = new Scanner(System.in);
System.out.println("Delete items");
int item;
Node node;
item = scan.nextInt();
node = new Node(item);
System.out.print("Deleting item " + item);
if (delete(node)) {
System.out.print(": deleted!");
} else {
System.out.print(": does not exist!");
}
public void deleteDemo() {
Scanner scan = new Scanner(System.in);
System.out.println("Delete items");
int item;
Node node;
item = scan.nextInt();
node = new Node(item);
System.out.print("Deleting item " + item);
if (delete(node)) {
System.out.print(": deleted!");
} else {
System.out.print(": does not exist!");
}
System.out.println();
printTree(root);
System.out.println("Pre order");
printTreepre(root);
}
System.out.println();
printTree(root);
System.out.println("Pre order");
printTreepre(root);
}
}

View File

@ -1,10 +1,10 @@
package DataStructures.Trees;
import java.util.LinkedList;
/**
*
* @author Varun Upadhyay (https://github.com/varunu28)
*
*/
* @author Varun Upadhyay (https://github.com/varunu28)
*/
// Driver Program
@ -38,13 +38,13 @@ public class TreeTraversal {
}
/**
* The Node class which initializes a Node of a tree
* Consists of all 4 traversal methods: printInOrder, printPostOrder printPreOrder & printLevelOrder
* printInOrder: LEFT -> ROOT -> RIGHT
* printPreOrder: ROOT -> LEFT -> RIGHT
* printPostOrder: LEFT -> RIGHT -> ROOT
* printLevelOrder: Prints by level (starting at root), from left to right.
*/
* The Node class which initializes a Node of a tree
* Consists of all 4 traversal methods: printInOrder, printPostOrder printPreOrder & printLevelOrder
* printInOrder: LEFT -> ROOT -> RIGHT
* printPreOrder: ROOT -> LEFT -> RIGHT
* printPostOrder: LEFT -> RIGHT -> ROOT
* printLevelOrder: Prints by level (starting at root), from left to right.
*/
class Node {
Node left, right;
int data;
@ -53,20 +53,17 @@ class Node {
this.data = data;
}
public void insert (int value) {
public void insert(int value) {
if (value < data) {
if (left == null) {
left = new Node(value);
}
else {
} else {
left.insert(value);
}
}
else {
} else {
if (right == null) {
right = new Node(value);
}
else {
} else {
right.insert(value);
}
}
@ -103,9 +100,9 @@ class Node {
}
/**
* O(n) time algorithm.
* Uses O(n) space to store nodes in a queue to aid in traversal.
*/
* O(n) time algorithm.
* Uses O(n) space to store nodes in a queue to aid in traversal.
*/
public void printLevelOrder() {
LinkedList<Node> queue = new LinkedList<>();
queue.add(this);

View File

@ -1,10 +1,11 @@
//Trie Data structure implementation without any libraries */
package DataStructures.Trees;
/**
* Trie Data structure implementation without any libraries
*
* @author Dheeraj Kumar Barnwal (https://github.com/dheeraj92)
*
*/
import java.util.Scanner;
public class TrieImp {
@ -13,34 +14,37 @@ public class TrieImp {
TrieNode[] child;
boolean end;
public TrieNode(){
public TrieNode() {
child = new TrieNode[26];
end = false;
}
}
private final TrieNode root;
public TrieImp(){
public TrieImp() {
root = new TrieNode();
}
public void insert(String word){
public void insert(String word) {
TrieNode currentNode = root;
for(int i=0; i < word.length();i++){
TrieNode node = currentNode.child[word.charAt(i)-'a'];
if(node == null){
for (int i = 0; i < word.length(); i++) {
TrieNode node = currentNode.child[word.charAt(i) - 'a'];
if (node == null) {
node = new TrieNode();
currentNode.child[word.charAt(i)-'a']=node;
currentNode.child[word.charAt(i) - 'a'] = node;
}
currentNode = node;
}
currentNode.end = true;
}
public boolean search(String word){
public boolean search(String word) {
TrieNode currentNode = root;
for(int i=0;i<word.length();i++){
for (int i = 0; i < word.length(); i++) {
char ch = word.charAt(i);
TrieNode node = currentNode.child[ch-'a'];
if(node == null){
TrieNode node = currentNode.child[ch - 'a'];
if (node == null) {
return false;
}
currentNode = node;
@ -48,29 +52,31 @@ public class TrieImp {
return currentNode.end;
}
public boolean delete(String word){
public boolean delete(String word) {
TrieNode currentNode = root;
for(int i=0;i<word.length();i++){
for (int i = 0; i < word.length(); i++) {
char ch = word.charAt(i);
TrieNode node = currentNode.child[ch-'a'];
if(node == null){
TrieNode node = currentNode.child[ch - 'a'];
if (node == null) {
return false;
}
currentNode = node;
}
if(currentNode.end == true){
if (currentNode.end == true) {
currentNode.end = false;
return true;
}
return false;
}
public static void sop(String print){
public static void sop(String print) {
System.out.println(print);
}
//Regex to check if word contains only a-z character
public static boolean isValid(String word){
/**
* Regex to check if word contains only a-z character
*/
public static boolean isValid(String word) {
return word.matches("^[a-z]+$");
}
@ -80,40 +86,40 @@ public class TrieImp {
@SuppressWarnings("resource")
Scanner scan = new Scanner(System.in);
sop("string should contain only a-z character for all operation");
while(true){
while (true) {
sop("1. Insert\n2. Search\n3. Delete\n4. Quit");
try{
try {
int t = scan.nextInt();
switch (t) {
case 1:
word = scan.next();
if(isValid(word))
if (isValid(word))
obj.insert(word);
else
sop("Invalid string: allowed only a-z");
break;
case 2:
word = scan.next();
boolean resS=false;
if(isValid(word))
boolean resS = false;
if (isValid(word))
resS = obj.search(word);
else
sop("Invalid string: allowed only a-z");
if(resS)
if (resS)
sop("word found");
else
sop("word not found");
break;
case 3:
word = scan.next();
boolean resD=false;
if(isValid(word))
boolean resD = false;
if (isValid(word))
resD = obj.delete(word);
else
sop("Invalid string: allowed only a-z");
if(resD){
if (resD) {
sop("word got deleted successfully");
}else{
} else {
sop("word not found");
}
break;
@ -125,7 +131,7 @@ public class TrieImp {
sop("Input int from 1-4");
break;
}
}catch(Exception e){
} catch (Exception e) {
String badInput = scan.next();
sop("This is bad input: " + badInput);
}

View File

@ -1,38 +1,37 @@
class Node
{
int data;
Node left, right;
public Node(int item)
{
data = item;
left = right = null;
package DataStructures.Trees;
public class ValidBSTOrNot {
class Node {
int data;
Node left, right;
public Node(int item) {
data = item;
left = right = null;
}
}
}
public class ValidBSTOrNot
{
//Root of the Binary Tree
Node root;
/* can give min and max value according to your code or
can write a function to find min and max value of tree. */
/* returns true if given search tree is binary
search tree (efficient version) */
boolean isBST() {
boolean isBST() {
return isBSTUtil(root, Integer.MIN_VALUE,
Integer.MAX_VALUE);
Integer.MAX_VALUE);
}
/* Returns true if the given tree is a BST and its
values are >= min and <= max. */
boolean isBSTUtil(Node node, int min, int max)
{
boolean isBSTUtil(Node node, int min, int max) {
/* an empty tree is BST */
if (node == null)
return true;
/* false if this node violates the min/max constraints */
if (node.data < min || node.data > max)
return false;
@ -40,23 +39,7 @@ public class ValidBSTOrNot
/* otherwise check the subtrees recursively
tightening the min/max constraints */
// Allow only distinct values
return (isBSTUtil(node.left, min, node.data-1) &&
isBSTUtil(node.right, node.data+1, max));
}
/* Driver program to test above functions */
public static void main(String args[])
{
ValidBSTOrNot tree = new ValidBSTOrNot();
tree.root = new Node(4);
tree.root.left = new Node(2);
tree.root.right = new Node(5);
tree.root.left.left = new Node(1);
tree.root.left.right = new Node(3);
if (tree.isBST())
System.out.println("IS BST");
else
System.out.println("Not a BST");
return (isBSTUtil(node.left, min, node.data - 1) &&
isBSTUtil(node.right, node.data + 1, max));
}
}