Remove duplicate KnapsackMemoization (#3769)

This commit is contained in:
Debasish Biswas
2022-11-19 17:02:01 +05:30
committed by GitHub
parent 9f78d1fcf7
commit 260f1b2bee
4 changed files with 88 additions and 105 deletions

View File

@ -1,51 +1,52 @@
package com.thealgorithms.dynamicprogramming;
import java.util.Arrays;
/**
* Recursive Solution for 0-1 knapsack with memoization
* This method is basically an extension to the recursive approach so that we
* can overcome the problem of calculating redundant cases and thus increased
* complexity. We can solve this problem by simply creating a 2-D array that can
* store a particular state (n, w) if we get it the first time.
*/
public class KnapsackMemoization {
private static int[][] t;
int knapSack(int W, int wt[], int val[], int N) {
// Returns the maximum value that can
// be put in a knapsack of capacity W
public static int knapsack(int[] wt, int[] value, int W, int n) {
if (t[n][W] != -1) {
return t[n][W];
// Declare the table dynamically
int dp[][] = new int[N + 1][W + 1];
// Loop to initially filled the
// table with -1
for (int i = 0; i < N + 1; i++) {
for (int j = 0; j < W + 1; j++) {
dp[i][j] = -1;
}
}
return knapSackRec(W, wt, val, N, dp);
}
// Returns the value of maximum profit using Recursive approach
int knapSackRec(int W, int wt[],
int val[], int n,
int[][] dp) {
// Base condition
if (n == 0 || W == 0) {
return 0;
}
if (wt[n - 1] <= W) {
t[n - 1][W - wt[n - 1]] = knapsack(wt, value, W - wt[n - 1], n - 1);
// Include item in the bag. In that case add the value of the item and call for the remaining items
int tmp1 = value[n - 1] + t[n - 1][W - wt[n - 1]];
// Don't include the nth item in the bag anl call for remaining item without reducing the weight
int tmp2 = knapsack(wt, value, W, n - 1);
t[n - 1][W] = tmp2;
// include the larger one
int tmp = tmp1 > tmp2 ? tmp1 : tmp2;
t[n][W] = tmp;
return tmp;
// If Weight for the item is more than the desired weight then don't include it
// Call for rest of the n-1 items
} else if (wt[n - 1] > W) {
t[n][W] = knapsack(wt, value, W, n - 1);
return t[n][W];
}
return -1;
}
// Driver code
public static void main(String args[]) {
int[] wt = { 1, 3, 4, 5 };
int[] value = { 1, 4, 5, 7 };
int W = 10;
t = new int[wt.length + 1][W + 1];
Arrays.stream(t).forEach(a -> Arrays.fill(a, -1));
int res = knapsack(wt, value, W, wt.length);
System.out.println("Maximum knapsack value " + res);
if (dp[n][W] != -1) {
return dp[n][W];
}
if (wt[n - 1] > W) {
// Store the value of function call stack in table
dp[n][W] = knapSackRec(W, wt, val, n - 1, dp);
return dp[n][W];
} else {
// Return value of table after storing
return dp[n][W] = Math.max((val[n - 1] + knapSackRec(W - wt[n - 1], wt, val, n - 1, dp)),
knapSackRec(W, wt, val, n - 1, dp));
}
}
}

View File

@ -1,68 +0,0 @@
package com.thealgorithms.dynamicprogramming;
// Here is the top-down approach of
// dynamic programming
public class MemoizationTechniqueKnapsack {
// A utility function that returns
// maximum of two integers
static int max(int a, int b) {
return (a > b) ? a : b;
}
// Returns the value of maximum profit
static int knapSackRec(int W, int wt[], int val[], int n, int[][] dp) {
// Base condition
if (n == 0 || W == 0) {
return 0;
}
if (dp[n][W] != -1) {
return dp[n][W];
}
if (
wt[n - 1] > W
) { // stack in table before return // Store the value of function call
return dp[n][W] = knapSackRec(W, wt, val, n - 1, dp);
} else { // Return value of table after storing
return (
dp[n][W] =
max(
(
val[n - 1] +
knapSackRec(W - wt[n - 1], wt, val, n - 1, dp)
),
knapSackRec(W, wt, val, n - 1, dp)
)
);
}
}
static int knapSack(int W, int wt[], int val[], int N) {
// Declare the table dynamically
int dp[][] = new int[N + 1][W + 1];
// Loop to initially filled the
// table with -1
for (int i = 0; i < N + 1; i++) {
for (int j = 0; j < W + 1; j++) {
dp[i][j] = -1;
}
}
return knapSackRec(W, wt, val, N, dp);
}
// Driver Code
public static void main(String[] args) {
int val[] = { 60, 100, 120 };
int wt[] = { 10, 20, 30 };
int W = 50;
int N = val.length;
System.out.println(knapSack(W, wt, val, N));
}
}