mirror of
https://github.com/TheAlgorithms/Java.git
synced 2025-07-06 17:29:31 +08:00
feat: add karatsuba multiplication (#5719)
* feat: add karatsuba multiplication * fix: fallback size * fix: big integer instances --------- Co-authored-by: Alex Klymenko <alexanderklmn@gmail.com>
This commit is contained in:
@ -0,0 +1,93 @@
|
|||||||
|
package com.thealgorithms.maths;
|
||||||
|
|
||||||
|
import java.math.BigInteger;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* This class provides an implementation of the Karatsuba multiplication algorithm.
|
||||||
|
*
|
||||||
|
* <p>
|
||||||
|
* Karatsuba multiplication is a divide-and-conquer algorithm for multiplying two large
|
||||||
|
* numbers. It is faster than the classical multiplication algorithm and reduces the
|
||||||
|
* time complexity to O(n^1.585) by breaking the multiplication of two n-digit numbers
|
||||||
|
* into three multiplications of n/2-digit numbers.
|
||||||
|
* </p>
|
||||||
|
*
|
||||||
|
* <p>
|
||||||
|
* The main idea of the Karatsuba algorithm is based on the following observation:
|
||||||
|
* </p>
|
||||||
|
*
|
||||||
|
* <pre>
|
||||||
|
* Let x and y be two numbers:
|
||||||
|
* x = a * 10^m + b
|
||||||
|
* y = c * 10^m + d
|
||||||
|
*
|
||||||
|
* Then, the product of x and y can be expressed as:
|
||||||
|
* x * y = (a * c) * 10^(2*m) + ((a * d) + (b * c)) * 10^m + (b * d)
|
||||||
|
* </pre>
|
||||||
|
*
|
||||||
|
* The Karatsuba algorithm calculates this more efficiently by reducing the number of
|
||||||
|
* multiplications from four to three by using the identity:
|
||||||
|
*
|
||||||
|
* <pre>
|
||||||
|
* (a + b)(c + d) = ac + ad + bc + bd
|
||||||
|
* </pre>
|
||||||
|
*
|
||||||
|
* <p>
|
||||||
|
* The recursion continues until the numbers are small enough to multiply directly using
|
||||||
|
* the traditional method.
|
||||||
|
* </p>
|
||||||
|
*/
|
||||||
|
public final class KaratsubaMultiplication {
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Private constructor to hide the implicit public constructor
|
||||||
|
*/
|
||||||
|
private KaratsubaMultiplication() {
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Multiplies two large numbers using the Karatsuba algorithm.
|
||||||
|
*
|
||||||
|
* <p>
|
||||||
|
* This method recursively splits the numbers into smaller parts until they are
|
||||||
|
* small enough to be multiplied directly using the traditional method.
|
||||||
|
* </p>
|
||||||
|
*
|
||||||
|
* @param x The first large number to be multiplied (BigInteger).
|
||||||
|
* @param y The second large number to be multiplied (BigInteger).
|
||||||
|
* @return The product of the two numbers (BigInteger).
|
||||||
|
*/
|
||||||
|
public static BigInteger karatsuba(BigInteger x, BigInteger y) {
|
||||||
|
// Base case: when numbers are small enough, use direct multiplication
|
||||||
|
// If the number is 4 bits or smaller, switch to the classical method
|
||||||
|
if (x.bitLength() <= 4 || y.bitLength() <= 4) {
|
||||||
|
return x.multiply(y);
|
||||||
|
}
|
||||||
|
|
||||||
|
// Find the maximum bit length of the two numbers
|
||||||
|
int n = Math.max(x.bitLength(), y.bitLength());
|
||||||
|
|
||||||
|
// Split the numbers in the middle
|
||||||
|
int m = n / 2;
|
||||||
|
|
||||||
|
// High and low parts of the first number x (x = a * 10^m + b)
|
||||||
|
BigInteger high1 = x.shiftRight(m); // a = x / 2^m (higher part)
|
||||||
|
BigInteger low1 = x.subtract(high1.shiftLeft(m)); // b = x - a * 2^m (lower part)
|
||||||
|
|
||||||
|
// High and low parts of the second number y (y = c * 10^m + d)
|
||||||
|
BigInteger high2 = y.shiftRight(m); // c = y / 2^m (higher part)
|
||||||
|
BigInteger low2 = y.subtract(high2.shiftLeft(m)); // d = y - c * 2^m (lower part)
|
||||||
|
|
||||||
|
// Recursively calculate three products
|
||||||
|
BigInteger z0 = karatsuba(low1, low2); // z0 = b * d (low1 * low2)
|
||||||
|
BigInteger z1 = karatsuba(low1.add(high1), low2.add(high2)); // z1 = (a + b) * (c + d)
|
||||||
|
BigInteger z2 = karatsuba(high1, high2); // z2 = a * c (high1 * high2)
|
||||||
|
|
||||||
|
// Combine the results using Karatsuba's formula
|
||||||
|
// z0 + ((z1 - z2 - z0) << m) + (z2 << 2m)
|
||||||
|
return z2
|
||||||
|
.shiftLeft(2 * m) // z2 * 10^(2*m)
|
||||||
|
.add(z1.subtract(z2).subtract(z0).shiftLeft(m)) // (z1 - z2 - z0) * 10^m
|
||||||
|
.add(z0); // z0
|
||||||
|
}
|
||||||
|
}
|
@ -0,0 +1,58 @@
|
|||||||
|
package com.thealgorithms.maths;
|
||||||
|
|
||||||
|
import static org.junit.jupiter.api.Assertions.assertEquals;
|
||||||
|
|
||||||
|
import java.math.BigInteger;
|
||||||
|
import java.util.stream.Stream;
|
||||||
|
import org.junit.jupiter.params.ParameterizedTest;
|
||||||
|
import org.junit.jupiter.params.provider.Arguments;
|
||||||
|
import org.junit.jupiter.params.provider.MethodSource;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Unit test class for {@link KaratsubaMultiplication} class.
|
||||||
|
*
|
||||||
|
* <p>
|
||||||
|
* This class tests various edge cases and normal cases for the
|
||||||
|
* Karatsuba multiplication algorithm implemented in the KaratsubaMultiplication class.
|
||||||
|
* It uses parameterized tests to handle multiple test cases.
|
||||||
|
* </p>
|
||||||
|
*/
|
||||||
|
class KaratsubaMultiplicationTest {
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Provides test data for the parameterized test.
|
||||||
|
* Each entry in the stream contains three elements: x, y, and the expected result.
|
||||||
|
*
|
||||||
|
* @return a stream of arguments for the parameterized test
|
||||||
|
*/
|
||||||
|
static Stream<Arguments> provideTestCases() {
|
||||||
|
return Stream.of(
|
||||||
|
// Test case 1: Two small numbers
|
||||||
|
Arguments.of(new BigInteger("1234"), new BigInteger("5678"), new BigInteger("7006652")),
|
||||||
|
// Test case 2: Two large numbers
|
||||||
|
Arguments.of(new BigInteger("342364"), new BigInteger("393958"), new BigInteger("134877036712")),
|
||||||
|
// Test case 3: One number is zero
|
||||||
|
Arguments.of(BigInteger.ZERO, new BigInteger("5678"), BigInteger.ZERO),
|
||||||
|
// Test case 4: Both numbers are zero
|
||||||
|
Arguments.of(BigInteger.ZERO, BigInteger.ZERO, BigInteger.ZERO),
|
||||||
|
// Test case 5: Single-digit numbers
|
||||||
|
Arguments.of(new BigInteger("9"), new BigInteger("8"), new BigInteger("72")));
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Parameterized test for Karatsuba multiplication.
|
||||||
|
*
|
||||||
|
* <p>
|
||||||
|
* This method runs the Karatsuba multiplication algorithm for multiple test cases.
|
||||||
|
* </p>
|
||||||
|
*
|
||||||
|
* @param x the first number to multiply
|
||||||
|
* @param y the second number to multiply
|
||||||
|
* @param expected the expected result of x * y
|
||||||
|
*/
|
||||||
|
@ParameterizedTest
|
||||||
|
@MethodSource("provideTestCases")
|
||||||
|
void testKaratsubaMultiplication(BigInteger x, BigInteger y, BigInteger expected) {
|
||||||
|
assertEquals(expected, KaratsubaMultiplication.karatsuba(x, y));
|
||||||
|
}
|
||||||
|
}
|
Reference in New Issue
Block a user