mirror of
https://github.com/TheAlgorithms/Java.git
synced 2025-07-06 00:54:32 +08:00
feat: add karatsuba multiplication (#5719)
* feat: add karatsuba multiplication * fix: fallback size * fix: big integer instances --------- Co-authored-by: Alex Klymenko <alexanderklmn@gmail.com>
This commit is contained in:
@ -0,0 +1,93 @@
|
||||
package com.thealgorithms.maths;
|
||||
|
||||
import java.math.BigInteger;
|
||||
|
||||
/**
|
||||
* This class provides an implementation of the Karatsuba multiplication algorithm.
|
||||
*
|
||||
* <p>
|
||||
* Karatsuba multiplication is a divide-and-conquer algorithm for multiplying two large
|
||||
* numbers. It is faster than the classical multiplication algorithm and reduces the
|
||||
* time complexity to O(n^1.585) by breaking the multiplication of two n-digit numbers
|
||||
* into three multiplications of n/2-digit numbers.
|
||||
* </p>
|
||||
*
|
||||
* <p>
|
||||
* The main idea of the Karatsuba algorithm is based on the following observation:
|
||||
* </p>
|
||||
*
|
||||
* <pre>
|
||||
* Let x and y be two numbers:
|
||||
* x = a * 10^m + b
|
||||
* y = c * 10^m + d
|
||||
*
|
||||
* Then, the product of x and y can be expressed as:
|
||||
* x * y = (a * c) * 10^(2*m) + ((a * d) + (b * c)) * 10^m + (b * d)
|
||||
* </pre>
|
||||
*
|
||||
* The Karatsuba algorithm calculates this more efficiently by reducing the number of
|
||||
* multiplications from four to three by using the identity:
|
||||
*
|
||||
* <pre>
|
||||
* (a + b)(c + d) = ac + ad + bc + bd
|
||||
* </pre>
|
||||
*
|
||||
* <p>
|
||||
* The recursion continues until the numbers are small enough to multiply directly using
|
||||
* the traditional method.
|
||||
* </p>
|
||||
*/
|
||||
public final class KaratsubaMultiplication {
|
||||
|
||||
/**
|
||||
* Private constructor to hide the implicit public constructor
|
||||
*/
|
||||
private KaratsubaMultiplication() {
|
||||
}
|
||||
|
||||
/**
|
||||
* Multiplies two large numbers using the Karatsuba algorithm.
|
||||
*
|
||||
* <p>
|
||||
* This method recursively splits the numbers into smaller parts until they are
|
||||
* small enough to be multiplied directly using the traditional method.
|
||||
* </p>
|
||||
*
|
||||
* @param x The first large number to be multiplied (BigInteger).
|
||||
* @param y The second large number to be multiplied (BigInteger).
|
||||
* @return The product of the two numbers (BigInteger).
|
||||
*/
|
||||
public static BigInteger karatsuba(BigInteger x, BigInteger y) {
|
||||
// Base case: when numbers are small enough, use direct multiplication
|
||||
// If the number is 4 bits or smaller, switch to the classical method
|
||||
if (x.bitLength() <= 4 || y.bitLength() <= 4) {
|
||||
return x.multiply(y);
|
||||
}
|
||||
|
||||
// Find the maximum bit length of the two numbers
|
||||
int n = Math.max(x.bitLength(), y.bitLength());
|
||||
|
||||
// Split the numbers in the middle
|
||||
int m = n / 2;
|
||||
|
||||
// High and low parts of the first number x (x = a * 10^m + b)
|
||||
BigInteger high1 = x.shiftRight(m); // a = x / 2^m (higher part)
|
||||
BigInteger low1 = x.subtract(high1.shiftLeft(m)); // b = x - a * 2^m (lower part)
|
||||
|
||||
// High and low parts of the second number y (y = c * 10^m + d)
|
||||
BigInteger high2 = y.shiftRight(m); // c = y / 2^m (higher part)
|
||||
BigInteger low2 = y.subtract(high2.shiftLeft(m)); // d = y - c * 2^m (lower part)
|
||||
|
||||
// Recursively calculate three products
|
||||
BigInteger z0 = karatsuba(low1, low2); // z0 = b * d (low1 * low2)
|
||||
BigInteger z1 = karatsuba(low1.add(high1), low2.add(high2)); // z1 = (a + b) * (c + d)
|
||||
BigInteger z2 = karatsuba(high1, high2); // z2 = a * c (high1 * high2)
|
||||
|
||||
// Combine the results using Karatsuba's formula
|
||||
// z0 + ((z1 - z2 - z0) << m) + (z2 << 2m)
|
||||
return z2
|
||||
.shiftLeft(2 * m) // z2 * 10^(2*m)
|
||||
.add(z1.subtract(z2).subtract(z0).shiftLeft(m)) // (z1 - z2 - z0) * 10^m
|
||||
.add(z0); // z0
|
||||
}
|
||||
}
|
Reference in New Issue
Block a user