mirror of
https://github.com/TheAlgorithms/Java.git
synced 2025-07-06 09:06:51 +08:00
Enhance documentation in FractionalKnapsack
(#5795)
This commit is contained in:
@ -3,39 +3,50 @@ package com.thealgorithms.greedyalgorithms;
|
||||
import java.util.Arrays;
|
||||
import java.util.Comparator;
|
||||
|
||||
// Problem Link: https://en.wikipedia.org/wiki/Continuous_knapsack_problem
|
||||
|
||||
/**
|
||||
* The FractionalKnapsack class provides a method to solve the fractional knapsack problem
|
||||
* using a greedy algorithm approach. It allows for selecting fractions of items to maximize
|
||||
* the total value in a knapsack with a given weight capacity.
|
||||
*
|
||||
* The problem consists of a set of items, each with a weight and a value, and a knapsack
|
||||
* that can carry a maximum weight. The goal is to maximize the value of items in the knapsack,
|
||||
* allowing for the inclusion of fractions of items.
|
||||
*
|
||||
* Problem Link: https://en.wikipedia.org/wiki/Continuous_knapsack_problem
|
||||
*/
|
||||
public final class FractionalKnapsack {
|
||||
private FractionalKnapsack() {
|
||||
}
|
||||
// Function to perform fractional knapsack
|
||||
|
||||
/**
|
||||
* Computes the maximum value that can be accommodated in a knapsack of a given capacity.
|
||||
*
|
||||
* @param weight an array of integers representing the weights of the items
|
||||
* @param value an array of integers representing the values of the items
|
||||
* @param capacity an integer representing the maximum weight capacity of the knapsack
|
||||
* @return the maximum value that can be obtained by including the items in the knapsack
|
||||
*/
|
||||
public static int fractionalKnapsack(int[] weight, int[] value, int capacity) {
|
||||
// Create a 2D array to store item indices and their value-to-weight ratios.
|
||||
double[][] ratio = new double[weight.length][2];
|
||||
|
||||
// Populate the ratio array with item indices and their value-to-weight ratios.
|
||||
for (int i = 0; i < weight.length; i++) {
|
||||
ratio[i][0] = i; // Assign item index.
|
||||
ratio[i][1] = value[i] / (double) weight[i]; // Calculate and assign value-to-weight ratio.
|
||||
ratio[i][0] = i;
|
||||
ratio[i][1] = value[i] / (double) weight[i];
|
||||
}
|
||||
|
||||
// Sort items by their value-to-weight ratios in descending order.
|
||||
Arrays.sort(ratio, Comparator.comparingDouble(o -> o[1]));
|
||||
|
||||
int finalValue = 0; // Variable to store the final knapsack value.
|
||||
double current = capacity; // Variable to track the remaining capacity of the knapsack.
|
||||
int finalValue = 0;
|
||||
double current = capacity;
|
||||
|
||||
// Iterate through the sorted items to select items for the knapsack.
|
||||
for (int i = ratio.length - 1; i >= 0; i--) {
|
||||
int index = (int) ratio[i][0]; // Get the item index.
|
||||
int index = (int) ratio[i][0];
|
||||
if (current >= weight[index]) {
|
||||
// If the entire item can fit in the knapsack, add its value.
|
||||
finalValue += value[index];
|
||||
current -= weight[index];
|
||||
} else {
|
||||
// If only a fraction of the item can fit, add a proportionate value.
|
||||
finalValue += (int) (ratio[i][1] * current);
|
||||
break; // Stop adding items to the knapsack since it's full.
|
||||
break;
|
||||
}
|
||||
}
|
||||
return finalValue;
|
||||
|
Reference in New Issue
Block a user