mirror of
https://github.com/TheAlgorithms/Java.git
synced 2025-12-19 07:00:35 +08:00
refactor: Enhance docs, code, add tests in LowestBasePalindrome (#6648)
This commit is contained in:
@@ -4,8 +4,26 @@ import java.util.ArrayList;
|
||||
import java.util.List;
|
||||
|
||||
/**
|
||||
* @brief Class for finding the lowest base in which a given integer is a palindrome.
|
||||
cf. https://oeis.org/A016026
|
||||
* Utility class for finding the lowest base in which a given integer is a
|
||||
* palindrome.
|
||||
* <p>
|
||||
* A number is a palindrome in a given base if its representation in that base
|
||||
* reads the same
|
||||
* forwards and backwards. For example, 15 in base 2 is 1111, which is
|
||||
* palindromic.
|
||||
* This class provides methods to check palindromic properties and find the
|
||||
* smallest base
|
||||
* where a number becomes palindromic.
|
||||
* </p>
|
||||
* <p>
|
||||
* Example: The number 15 in base 2 is represented as [1,1,1,1], which is
|
||||
* palindromic.
|
||||
* The number 10 in base 3 is represented as [1,0,1], which is also palindromic.
|
||||
* </p>
|
||||
*
|
||||
* @see <a href="https://oeis.org/A016026">OEIS A016026 - Smallest base in which
|
||||
* n is palindromic</a>
|
||||
* @author TheAlgorithms Contributors
|
||||
*/
|
||||
public final class LowestBasePalindrome {
|
||||
private LowestBasePalindrome() {
|
||||
@@ -37,12 +55,18 @@ public final class LowestBasePalindrome {
|
||||
|
||||
/**
|
||||
* Computes the digits of a given number in a specified base.
|
||||
* <p>
|
||||
* The digits are returned in reverse order (least significant digit first).
|
||||
* For example, the number 13 in base 2 produces [1,0,1,1] representing 1101 in
|
||||
* binary.
|
||||
* </p>
|
||||
*
|
||||
* @param number the number to be converted
|
||||
* @param base the base to be used for the conversion
|
||||
* @return a list of digits representing the number in the given base, with the most
|
||||
* significant digit at the end of the list
|
||||
* @throws IllegalArgumentException if the number is negative or the base is less than 2
|
||||
* @param number the number to be converted (must be non-negative)
|
||||
* @param base the base to be used for the conversion (must be greater than 1)
|
||||
* @return a list of digits representing the number in the given base, with the
|
||||
* least significant digit at the beginning of the list
|
||||
* @throws IllegalArgumentException if the number is negative or the base is
|
||||
* less than 2
|
||||
*/
|
||||
public static List<Integer> computeDigitsInBase(int number, int base) {
|
||||
checkNumber(number);
|
||||
@@ -58,6 +82,10 @@ public final class LowestBasePalindrome {
|
||||
|
||||
/**
|
||||
* Checks if a list of integers is palindromic.
|
||||
* <p>
|
||||
* A list is palindromic if it reads the same forwards and backwards.
|
||||
* For example, [1,2,1] is palindromic, but [1,2,3] is not.
|
||||
* </p>
|
||||
*
|
||||
* @param list the list of integers to be checked
|
||||
* @return {@code true} if the list is a palindrome, {@code false} otherwise
|
||||
@@ -73,12 +101,29 @@ public final class LowestBasePalindrome {
|
||||
}
|
||||
|
||||
/**
|
||||
* Checks if the representation of a given number in a specified base is palindromic.
|
||||
* Checks if the representation of a given number in a specified base is
|
||||
* palindromic.
|
||||
* <p>
|
||||
* This method first validates the input, then applies optimization: if the
|
||||
* number
|
||||
* ends with 0 in the given base (i.e., divisible by the base), it cannot be
|
||||
* palindromic
|
||||
* as palindromes cannot start with 0.
|
||||
* </p>
|
||||
* <p>
|
||||
* Examples:
|
||||
* - 101 in base 10 is palindromic (101)
|
||||
* - 15 in base 2 is palindromic (1111)
|
||||
* - 10 in base 3 is palindromic (101)
|
||||
* </p>
|
||||
*
|
||||
* @param number the number to be checked
|
||||
* @param base the base in which the number will be represented
|
||||
* @return {@code true} if the number is palindromic in the specified base, {@code false} otherwise
|
||||
* @throws IllegalArgumentException if the number is negative or the base is less than 2
|
||||
* @param number the number to be checked (must be non-negative)
|
||||
* @param base the base in which the number will be represented (must be
|
||||
* greater than 1)
|
||||
* @return {@code true} if the number is palindromic in the specified base,
|
||||
* {@code false} otherwise
|
||||
* @throws IllegalArgumentException if the number is negative or the base is
|
||||
* less than 2
|
||||
*/
|
||||
public static boolean isPalindromicInBase(int number, int base) {
|
||||
checkNumber(number);
|
||||
@@ -89,7 +134,8 @@ public final class LowestBasePalindrome {
|
||||
}
|
||||
|
||||
if (number % base == 0) {
|
||||
// If the last digit of the number in the given base is 0, it can't be palindromic
|
||||
// If the last digit of the number in the given base is 0, it can't be
|
||||
// palindromic
|
||||
return false;
|
||||
}
|
||||
|
||||
@@ -97,10 +143,29 @@ public final class LowestBasePalindrome {
|
||||
}
|
||||
|
||||
/**
|
||||
* Finds the smallest base in which the representation of a given number is palindromic.
|
||||
* Finds the smallest base in which the representation of a given number is
|
||||
* palindromic.
|
||||
* <p>
|
||||
* This method iteratively checks bases starting from 2 until it finds one where
|
||||
* the number is palindromic. For any number n ≥ 2, the number is always
|
||||
* palindromic
|
||||
* in base n-1 (represented as [1, 1]), so this algorithm is guaranteed to
|
||||
* terminate.
|
||||
* </p>
|
||||
* <p>
|
||||
* Time Complexity: O(n * log(n)) in the worst case, where we check each base
|
||||
* and
|
||||
* convert the number to that base.
|
||||
* </p>
|
||||
* <p>
|
||||
* Examples:
|
||||
* - lowestBasePalindrome(15) returns 2 (15 in base 2 is 1111)
|
||||
* - lowestBasePalindrome(10) returns 3 (10 in base 3 is 101)
|
||||
* - lowestBasePalindrome(11) returns 10 (11 in base 10 is 11)
|
||||
* </p>
|
||||
*
|
||||
* @param number the number to be checked
|
||||
* @return the smallest base in which the number is a palindrome
|
||||
* @param number the number to be checked (must be non-negative)
|
||||
* @return the smallest base in which the number is a palindrome (base ≥ 2)
|
||||
* @throws IllegalArgumentException if the number is negative
|
||||
*/
|
||||
public static int lowestBasePalindrome(int number) {
|
||||
|
||||
Reference in New Issue
Block a user