mirror of
https://github.com/TheAlgorithms/Java.git
synced 2025-07-05 16:27:33 +08:00
Enhance docs, add tests in Kruskal
(#5967)
This commit is contained in:
@ -812,6 +812,7 @@
|
||||
* [JohnsonsAlgorithmTest](https://github.com/TheAlgorithms/Java/blob/master/src/test/java/com/thealgorithms/datastructures/graphs/JohnsonsAlgorithmTest.java)
|
||||
* [KahnsAlgorithmTest](https://github.com/TheAlgorithms/Java/blob/master/src/test/java/com/thealgorithms/datastructures/graphs/KahnsAlgorithmTest.java)
|
||||
* [KosarajuTest](https://github.com/TheAlgorithms/Java/blob/master/src/test/java/com/thealgorithms/datastructures/graphs/KosarajuTest.java)
|
||||
* [KruskalTest](https://github.com/TheAlgorithms/Java/blob/master/src/test/java/com/thealgorithms/datastructures/graphs/KruskalTest.java)
|
||||
* [TarjansAlgorithmTest](https://github.com/TheAlgorithms/Java/blob/master/src/test/java/com/thealgorithms/datastructures/graphs/TarjansAlgorithmTest.java)
|
||||
* [WelshPowellTest](https://github.com/TheAlgorithms/Java/blob/master/src/test/java/com/thealgorithms/datastructures/graphs/WelshPowellTest.java)
|
||||
* hashmap
|
||||
|
@ -1,27 +1,34 @@
|
||||
package com.thealgorithms.datastructures.graphs;
|
||||
|
||||
// Problem -> Connect all the edges with the minimum cost.
|
||||
// Possible Solution -> Kruskal Algorithm (KA), KA finds the minimum-spanning-tree, which means, the
|
||||
// group of edges with the minimum sum of their weights that connect the whole graph.
|
||||
// The graph needs to be connected, because if there are nodes impossible to reach, there are no
|
||||
// edges that could connect every node in the graph.
|
||||
// KA is a Greedy Algorithm, because edges are analysed based on their weights, that is why a
|
||||
// Priority Queue is used, to take first those less weighted.
|
||||
// This implementations below has some changes compared to conventional ones, but they are explained
|
||||
// all along the code.
|
||||
import java.util.Comparator;
|
||||
import java.util.HashSet;
|
||||
import java.util.PriorityQueue;
|
||||
|
||||
/**
|
||||
* The Kruskal class implements Kruskal's Algorithm to find the Minimum Spanning Tree (MST)
|
||||
* of a connected, undirected graph. The algorithm constructs the MST by selecting edges
|
||||
* with the least weight, ensuring no cycles are formed, and using union-find to track the
|
||||
* connected components.
|
||||
*
|
||||
* <p><strong>Key Features:</strong></p>
|
||||
* <ul>
|
||||
* <li>The graph is represented using an adjacency list, where each node points to a set of edges.</li>
|
||||
* <li>Each edge is processed in ascending order of weight using a priority queue.</li>
|
||||
* <li>The algorithm stops when all nodes are connected or no more edges are available.</li>
|
||||
* </ul>
|
||||
*
|
||||
* <p><strong>Time Complexity:</strong> O(E log V), where E is the number of edges and V is the number of vertices.</p>
|
||||
*/
|
||||
public class Kruskal {
|
||||
|
||||
// Complexity: O(E log V) time, where E is the number of edges in the graph and V is the number
|
||||
// of vertices
|
||||
private static class Edge {
|
||||
/**
|
||||
* Represents an edge in the graph with a source, destination, and weight.
|
||||
*/
|
||||
static class Edge {
|
||||
|
||||
private int from;
|
||||
private int to;
|
||||
private int weight;
|
||||
int from;
|
||||
int to;
|
||||
int weight;
|
||||
|
||||
Edge(int from, int to, int weight) {
|
||||
this.from = from;
|
||||
@ -30,51 +37,30 @@ public class Kruskal {
|
||||
}
|
||||
}
|
||||
|
||||
private static void addEdge(HashSet<Edge>[] graph, int from, int to, int weight) {
|
||||
/**
|
||||
* Adds an edge to the graph.
|
||||
*
|
||||
* @param graph the adjacency list representing the graph
|
||||
* @param from the source vertex of the edge
|
||||
* @param to the destination vertex of the edge
|
||||
* @param weight the weight of the edge
|
||||
*/
|
||||
static void addEdge(HashSet<Edge>[] graph, int from, int to, int weight) {
|
||||
graph[from].add(new Edge(from, to, weight));
|
||||
}
|
||||
|
||||
public static void main(String[] args) {
|
||||
HashSet<Edge>[] graph = new HashSet[7];
|
||||
for (int i = 0; i < graph.length; i++) {
|
||||
graph[i] = new HashSet<>();
|
||||
}
|
||||
addEdge(graph, 0, 1, 2);
|
||||
addEdge(graph, 0, 2, 3);
|
||||
addEdge(graph, 0, 3, 3);
|
||||
addEdge(graph, 1, 2, 4);
|
||||
addEdge(graph, 2, 3, 5);
|
||||
addEdge(graph, 1, 4, 3);
|
||||
addEdge(graph, 2, 4, 1);
|
||||
addEdge(graph, 3, 5, 7);
|
||||
addEdge(graph, 4, 5, 8);
|
||||
addEdge(graph, 5, 6, 9);
|
||||
|
||||
System.out.println("Initial Graph: ");
|
||||
for (int i = 0; i < graph.length; i++) {
|
||||
for (Edge edge : graph[i]) {
|
||||
System.out.println(i + " <-- weight " + edge.weight + " --> " + edge.to);
|
||||
}
|
||||
}
|
||||
|
||||
Kruskal k = new Kruskal();
|
||||
HashSet<Edge>[] solGraph = k.kruskal(graph);
|
||||
|
||||
System.out.println("\nMinimal Graph: ");
|
||||
for (int i = 0; i < solGraph.length; i++) {
|
||||
for (Edge edge : solGraph[i]) {
|
||||
System.out.println(i + " <-- weight " + edge.weight + " --> " + edge.to);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Kruskal's algorithm to find the Minimum Spanning Tree (MST) of a graph.
|
||||
*
|
||||
* @param graph the adjacency list representing the input graph
|
||||
* @return the adjacency list representing the MST
|
||||
*/
|
||||
public HashSet<Edge>[] kruskal(HashSet<Edge>[] graph) {
|
||||
int nodes = graph.length;
|
||||
int[] captain = new int[nodes];
|
||||
// captain of i, stores the set with all the connected nodes to i
|
||||
int[] captain = new int[nodes]; // Stores the "leader" of each node's connected component
|
||||
HashSet<Integer>[] connectedGroups = new HashSet[nodes];
|
||||
HashSet<Edge>[] minGraph = new HashSet[nodes];
|
||||
PriorityQueue<Edge> edges = new PriorityQueue<>((Comparator.comparingInt(edge -> edge.weight)));
|
||||
PriorityQueue<Edge> edges = new PriorityQueue<>(Comparator.comparingInt(edge -> edge.weight));
|
||||
for (int i = 0; i < nodes; i++) {
|
||||
minGraph[i] = new HashSet<>();
|
||||
connectedGroups[i] = new HashSet<>();
|
||||
@ -83,18 +69,21 @@ public class Kruskal {
|
||||
edges.addAll(graph[i]);
|
||||
}
|
||||
int connectedElements = 0;
|
||||
// as soon as two sets merge all the elements, the algorithm must stop
|
||||
while (connectedElements != nodes && !edges.isEmpty()) {
|
||||
Edge edge = edges.poll();
|
||||
// This if avoids cycles
|
||||
|
||||
// Avoid forming cycles by checking if the nodes belong to different connected components
|
||||
if (!connectedGroups[captain[edge.from]].contains(edge.to) && !connectedGroups[captain[edge.to]].contains(edge.from)) {
|
||||
// merge sets of the captains of each point connected by the edge
|
||||
// Merge the two sets of nodes connected by the edge
|
||||
connectedGroups[captain[edge.from]].addAll(connectedGroups[captain[edge.to]]);
|
||||
// update captains of the elements merged
|
||||
|
||||
// Update the captain for each merged node
|
||||
connectedGroups[captain[edge.from]].forEach(i -> captain[i] = captain[edge.from]);
|
||||
// add Edge to minimal graph
|
||||
|
||||
// Add the edge to the resulting MST graph
|
||||
addEdge(minGraph, edge.from, edge.to, edge.weight);
|
||||
// count how many elements have been merged
|
||||
|
||||
// Update the count of connected nodes
|
||||
connectedElements = connectedGroups[captain[edge.from]].size();
|
||||
}
|
||||
}
|
||||
|
@ -0,0 +1,112 @@
|
||||
package com.thealgorithms.datastructures.graphs;
|
||||
|
||||
import static org.junit.jupiter.api.Assertions.assertEquals;
|
||||
import static org.junit.jupiter.api.Assertions.assertTrue;
|
||||
|
||||
import java.util.ArrayList;
|
||||
import java.util.Arrays;
|
||||
import java.util.HashSet;
|
||||
import java.util.List;
|
||||
import org.junit.jupiter.api.BeforeEach;
|
||||
import org.junit.jupiter.api.Test;
|
||||
|
||||
public class KruskalTest {
|
||||
|
||||
private Kruskal kruskal;
|
||||
private HashSet<Kruskal.Edge>[] graph;
|
||||
|
||||
@BeforeEach
|
||||
public void setUp() {
|
||||
kruskal = new Kruskal();
|
||||
int n = 7;
|
||||
graph = new HashSet[n];
|
||||
for (int i = 0; i < n; i++) {
|
||||
graph[i] = new HashSet<>();
|
||||
}
|
||||
|
||||
// Add edges to the graph
|
||||
Kruskal.addEdge(graph, 0, 1, 2);
|
||||
Kruskal.addEdge(graph, 0, 2, 3);
|
||||
Kruskal.addEdge(graph, 0, 3, 3);
|
||||
Kruskal.addEdge(graph, 1, 2, 4);
|
||||
Kruskal.addEdge(graph, 2, 3, 5);
|
||||
Kruskal.addEdge(graph, 1, 4, 3);
|
||||
Kruskal.addEdge(graph, 2, 4, 1);
|
||||
Kruskal.addEdge(graph, 3, 5, 7);
|
||||
Kruskal.addEdge(graph, 4, 5, 8);
|
||||
Kruskal.addEdge(graph, 5, 6, 9);
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testKruskal() {
|
||||
int n = 6;
|
||||
HashSet<Kruskal.Edge>[] graph = new HashSet[n];
|
||||
|
||||
for (int i = 0; i < n; i++) {
|
||||
graph[i] = new HashSet<>();
|
||||
}
|
||||
|
||||
Kruskal.addEdge(graph, 0, 1, 4);
|
||||
Kruskal.addEdge(graph, 0, 2, 2);
|
||||
Kruskal.addEdge(graph, 1, 2, 1);
|
||||
Kruskal.addEdge(graph, 1, 3, 5);
|
||||
Kruskal.addEdge(graph, 2, 3, 8);
|
||||
Kruskal.addEdge(graph, 2, 4, 10);
|
||||
Kruskal.addEdge(graph, 3, 4, 2);
|
||||
Kruskal.addEdge(graph, 3, 5, 6);
|
||||
Kruskal.addEdge(graph, 4, 5, 3);
|
||||
|
||||
HashSet<Kruskal.Edge>[] result = kruskal.kruskal(graph);
|
||||
|
||||
List<List<Integer>> actualEdges = new ArrayList<>();
|
||||
for (HashSet<Kruskal.Edge> edges : result) {
|
||||
for (Kruskal.Edge edge : edges) {
|
||||
actualEdges.add(Arrays.asList(edge.from, edge.to, edge.weight));
|
||||
}
|
||||
}
|
||||
|
||||
List<List<Integer>> expectedEdges = Arrays.asList(Arrays.asList(1, 2, 1), Arrays.asList(0, 2, 2), Arrays.asList(3, 4, 2), Arrays.asList(4, 5, 3), Arrays.asList(1, 3, 5));
|
||||
|
||||
assertTrue(actualEdges.containsAll(expectedEdges) && expectedEdges.containsAll(actualEdges));
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testEmptyGraph() {
|
||||
HashSet<Kruskal.Edge>[] emptyGraph = new HashSet[0];
|
||||
HashSet<Kruskal.Edge>[] result = kruskal.kruskal(emptyGraph);
|
||||
assertEquals(0, result.length);
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testSingleNodeGraph() {
|
||||
HashSet<Kruskal.Edge>[] singleNodeGraph = new HashSet[1];
|
||||
singleNodeGraph[0] = new HashSet<>();
|
||||
HashSet<Kruskal.Edge>[] result = kruskal.kruskal(singleNodeGraph);
|
||||
assertTrue(result[0].isEmpty());
|
||||
}
|
||||
|
||||
@Test
|
||||
public void testGraphWithDisconnectedNodes() {
|
||||
int n = 5;
|
||||
HashSet<Kruskal.Edge>[] disconnectedGraph = new HashSet[n];
|
||||
for (int i = 0; i < n; i++) {
|
||||
disconnectedGraph[i] = new HashSet<>();
|
||||
}
|
||||
|
||||
Kruskal.addEdge(disconnectedGraph, 0, 1, 2);
|
||||
Kruskal.addEdge(disconnectedGraph, 2, 3, 4);
|
||||
|
||||
HashSet<Kruskal.Edge>[] result = kruskal.kruskal(disconnectedGraph);
|
||||
|
||||
List<List<Integer>> actualEdges = new ArrayList<>();
|
||||
for (HashSet<Kruskal.Edge> edges : result) {
|
||||
for (Kruskal.Edge edge : edges) {
|
||||
actualEdges.add(Arrays.asList(edge.from, edge.to, edge.weight));
|
||||
}
|
||||
}
|
||||
|
||||
List<List<Integer>> expectedEdges = Arrays.asList(Arrays.asList(0, 1, 2), Arrays.asList(2, 3, 4));
|
||||
|
||||
assertTrue(actualEdges.containsAll(expectedEdges) && expectedEdges.containsAll(actualEdges));
|
||||
}
|
||||
}
|
Reference in New Issue
Block a user