Enhance docs, add tests in Kruskal (#5967)

This commit is contained in:
Hardik Pawar
2024-10-24 11:11:55 +05:30
committed by GitHub
parent 578e5a73df
commit 0feb416188
3 changed files with 161 additions and 59 deletions

View File

@ -812,6 +812,7 @@
* [JohnsonsAlgorithmTest](https://github.com/TheAlgorithms/Java/blob/master/src/test/java/com/thealgorithms/datastructures/graphs/JohnsonsAlgorithmTest.java) * [JohnsonsAlgorithmTest](https://github.com/TheAlgorithms/Java/blob/master/src/test/java/com/thealgorithms/datastructures/graphs/JohnsonsAlgorithmTest.java)
* [KahnsAlgorithmTest](https://github.com/TheAlgorithms/Java/blob/master/src/test/java/com/thealgorithms/datastructures/graphs/KahnsAlgorithmTest.java) * [KahnsAlgorithmTest](https://github.com/TheAlgorithms/Java/blob/master/src/test/java/com/thealgorithms/datastructures/graphs/KahnsAlgorithmTest.java)
* [KosarajuTest](https://github.com/TheAlgorithms/Java/blob/master/src/test/java/com/thealgorithms/datastructures/graphs/KosarajuTest.java) * [KosarajuTest](https://github.com/TheAlgorithms/Java/blob/master/src/test/java/com/thealgorithms/datastructures/graphs/KosarajuTest.java)
* [KruskalTest](https://github.com/TheAlgorithms/Java/blob/master/src/test/java/com/thealgorithms/datastructures/graphs/KruskalTest.java)
* [TarjansAlgorithmTest](https://github.com/TheAlgorithms/Java/blob/master/src/test/java/com/thealgorithms/datastructures/graphs/TarjansAlgorithmTest.java) * [TarjansAlgorithmTest](https://github.com/TheAlgorithms/Java/blob/master/src/test/java/com/thealgorithms/datastructures/graphs/TarjansAlgorithmTest.java)
* [WelshPowellTest](https://github.com/TheAlgorithms/Java/blob/master/src/test/java/com/thealgorithms/datastructures/graphs/WelshPowellTest.java) * [WelshPowellTest](https://github.com/TheAlgorithms/Java/blob/master/src/test/java/com/thealgorithms/datastructures/graphs/WelshPowellTest.java)
* hashmap * hashmap

View File

@ -1,27 +1,34 @@
package com.thealgorithms.datastructures.graphs; package com.thealgorithms.datastructures.graphs;
// Problem -> Connect all the edges with the minimum cost.
// Possible Solution -> Kruskal Algorithm (KA), KA finds the minimum-spanning-tree, which means, the
// group of edges with the minimum sum of their weights that connect the whole graph.
// The graph needs to be connected, because if there are nodes impossible to reach, there are no
// edges that could connect every node in the graph.
// KA is a Greedy Algorithm, because edges are analysed based on their weights, that is why a
// Priority Queue is used, to take first those less weighted.
// This implementations below has some changes compared to conventional ones, but they are explained
// all along the code.
import java.util.Comparator; import java.util.Comparator;
import java.util.HashSet; import java.util.HashSet;
import java.util.PriorityQueue; import java.util.PriorityQueue;
/**
* The Kruskal class implements Kruskal's Algorithm to find the Minimum Spanning Tree (MST)
* of a connected, undirected graph. The algorithm constructs the MST by selecting edges
* with the least weight, ensuring no cycles are formed, and using union-find to track the
* connected components.
*
* <p><strong>Key Features:</strong></p>
* <ul>
* <li>The graph is represented using an adjacency list, where each node points to a set of edges.</li>
* <li>Each edge is processed in ascending order of weight using a priority queue.</li>
* <li>The algorithm stops when all nodes are connected or no more edges are available.</li>
* </ul>
*
* <p><strong>Time Complexity:</strong> O(E log V), where E is the number of edges and V is the number of vertices.</p>
*/
public class Kruskal { public class Kruskal {
// Complexity: O(E log V) time, where E is the number of edges in the graph and V is the number /**
// of vertices * Represents an edge in the graph with a source, destination, and weight.
private static class Edge { */
static class Edge {
private int from; int from;
private int to; int to;
private int weight; int weight;
Edge(int from, int to, int weight) { Edge(int from, int to, int weight) {
this.from = from; this.from = from;
@ -30,51 +37,30 @@ public class Kruskal {
} }
} }
private static void addEdge(HashSet<Edge>[] graph, int from, int to, int weight) { /**
* Adds an edge to the graph.
*
* @param graph the adjacency list representing the graph
* @param from the source vertex of the edge
* @param to the destination vertex of the edge
* @param weight the weight of the edge
*/
static void addEdge(HashSet<Edge>[] graph, int from, int to, int weight) {
graph[from].add(new Edge(from, to, weight)); graph[from].add(new Edge(from, to, weight));
} }
public static void main(String[] args) { /**
HashSet<Edge>[] graph = new HashSet[7]; * Kruskal's algorithm to find the Minimum Spanning Tree (MST) of a graph.
for (int i = 0; i < graph.length; i++) { *
graph[i] = new HashSet<>(); * @param graph the adjacency list representing the input graph
} * @return the adjacency list representing the MST
addEdge(graph, 0, 1, 2); */
addEdge(graph, 0, 2, 3);
addEdge(graph, 0, 3, 3);
addEdge(graph, 1, 2, 4);
addEdge(graph, 2, 3, 5);
addEdge(graph, 1, 4, 3);
addEdge(graph, 2, 4, 1);
addEdge(graph, 3, 5, 7);
addEdge(graph, 4, 5, 8);
addEdge(graph, 5, 6, 9);
System.out.println("Initial Graph: ");
for (int i = 0; i < graph.length; i++) {
for (Edge edge : graph[i]) {
System.out.println(i + " <-- weight " + edge.weight + " --> " + edge.to);
}
}
Kruskal k = new Kruskal();
HashSet<Edge>[] solGraph = k.kruskal(graph);
System.out.println("\nMinimal Graph: ");
for (int i = 0; i < solGraph.length; i++) {
for (Edge edge : solGraph[i]) {
System.out.println(i + " <-- weight " + edge.weight + " --> " + edge.to);
}
}
}
public HashSet<Edge>[] kruskal(HashSet<Edge>[] graph) { public HashSet<Edge>[] kruskal(HashSet<Edge>[] graph) {
int nodes = graph.length; int nodes = graph.length;
int[] captain = new int[nodes]; int[] captain = new int[nodes]; // Stores the "leader" of each node's connected component
// captain of i, stores the set with all the connected nodes to i
HashSet<Integer>[] connectedGroups = new HashSet[nodes]; HashSet<Integer>[] connectedGroups = new HashSet[nodes];
HashSet<Edge>[] minGraph = new HashSet[nodes]; HashSet<Edge>[] minGraph = new HashSet[nodes];
PriorityQueue<Edge> edges = new PriorityQueue<>((Comparator.comparingInt(edge -> edge.weight))); PriorityQueue<Edge> edges = new PriorityQueue<>(Comparator.comparingInt(edge -> edge.weight));
for (int i = 0; i < nodes; i++) { for (int i = 0; i < nodes; i++) {
minGraph[i] = new HashSet<>(); minGraph[i] = new HashSet<>();
connectedGroups[i] = new HashSet<>(); connectedGroups[i] = new HashSet<>();
@ -83,18 +69,21 @@ public class Kruskal {
edges.addAll(graph[i]); edges.addAll(graph[i]);
} }
int connectedElements = 0; int connectedElements = 0;
// as soon as two sets merge all the elements, the algorithm must stop
while (connectedElements != nodes && !edges.isEmpty()) { while (connectedElements != nodes && !edges.isEmpty()) {
Edge edge = edges.poll(); Edge edge = edges.poll();
// This if avoids cycles
// Avoid forming cycles by checking if the nodes belong to different connected components
if (!connectedGroups[captain[edge.from]].contains(edge.to) && !connectedGroups[captain[edge.to]].contains(edge.from)) { if (!connectedGroups[captain[edge.from]].contains(edge.to) && !connectedGroups[captain[edge.to]].contains(edge.from)) {
// merge sets of the captains of each point connected by the edge // Merge the two sets of nodes connected by the edge
connectedGroups[captain[edge.from]].addAll(connectedGroups[captain[edge.to]]); connectedGroups[captain[edge.from]].addAll(connectedGroups[captain[edge.to]]);
// update captains of the elements merged
// Update the captain for each merged node
connectedGroups[captain[edge.from]].forEach(i -> captain[i] = captain[edge.from]); connectedGroups[captain[edge.from]].forEach(i -> captain[i] = captain[edge.from]);
// add Edge to minimal graph
// Add the edge to the resulting MST graph
addEdge(minGraph, edge.from, edge.to, edge.weight); addEdge(minGraph, edge.from, edge.to, edge.weight);
// count how many elements have been merged
// Update the count of connected nodes
connectedElements = connectedGroups[captain[edge.from]].size(); connectedElements = connectedGroups[captain[edge.from]].size();
} }
} }

View File

@ -0,0 +1,112 @@
package com.thealgorithms.datastructures.graphs;
import static org.junit.jupiter.api.Assertions.assertEquals;
import static org.junit.jupiter.api.Assertions.assertTrue;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashSet;
import java.util.List;
import org.junit.jupiter.api.BeforeEach;
import org.junit.jupiter.api.Test;
public class KruskalTest {
private Kruskal kruskal;
private HashSet<Kruskal.Edge>[] graph;
@BeforeEach
public void setUp() {
kruskal = new Kruskal();
int n = 7;
graph = new HashSet[n];
for (int i = 0; i < n; i++) {
graph[i] = new HashSet<>();
}
// Add edges to the graph
Kruskal.addEdge(graph, 0, 1, 2);
Kruskal.addEdge(graph, 0, 2, 3);
Kruskal.addEdge(graph, 0, 3, 3);
Kruskal.addEdge(graph, 1, 2, 4);
Kruskal.addEdge(graph, 2, 3, 5);
Kruskal.addEdge(graph, 1, 4, 3);
Kruskal.addEdge(graph, 2, 4, 1);
Kruskal.addEdge(graph, 3, 5, 7);
Kruskal.addEdge(graph, 4, 5, 8);
Kruskal.addEdge(graph, 5, 6, 9);
}
@Test
public void testKruskal() {
int n = 6;
HashSet<Kruskal.Edge>[] graph = new HashSet[n];
for (int i = 0; i < n; i++) {
graph[i] = new HashSet<>();
}
Kruskal.addEdge(graph, 0, 1, 4);
Kruskal.addEdge(graph, 0, 2, 2);
Kruskal.addEdge(graph, 1, 2, 1);
Kruskal.addEdge(graph, 1, 3, 5);
Kruskal.addEdge(graph, 2, 3, 8);
Kruskal.addEdge(graph, 2, 4, 10);
Kruskal.addEdge(graph, 3, 4, 2);
Kruskal.addEdge(graph, 3, 5, 6);
Kruskal.addEdge(graph, 4, 5, 3);
HashSet<Kruskal.Edge>[] result = kruskal.kruskal(graph);
List<List<Integer>> actualEdges = new ArrayList<>();
for (HashSet<Kruskal.Edge> edges : result) {
for (Kruskal.Edge edge : edges) {
actualEdges.add(Arrays.asList(edge.from, edge.to, edge.weight));
}
}
List<List<Integer>> expectedEdges = Arrays.asList(Arrays.asList(1, 2, 1), Arrays.asList(0, 2, 2), Arrays.asList(3, 4, 2), Arrays.asList(4, 5, 3), Arrays.asList(1, 3, 5));
assertTrue(actualEdges.containsAll(expectedEdges) && expectedEdges.containsAll(actualEdges));
}
@Test
public void testEmptyGraph() {
HashSet<Kruskal.Edge>[] emptyGraph = new HashSet[0];
HashSet<Kruskal.Edge>[] result = kruskal.kruskal(emptyGraph);
assertEquals(0, result.length);
}
@Test
public void testSingleNodeGraph() {
HashSet<Kruskal.Edge>[] singleNodeGraph = new HashSet[1];
singleNodeGraph[0] = new HashSet<>();
HashSet<Kruskal.Edge>[] result = kruskal.kruskal(singleNodeGraph);
assertTrue(result[0].isEmpty());
}
@Test
public void testGraphWithDisconnectedNodes() {
int n = 5;
HashSet<Kruskal.Edge>[] disconnectedGraph = new HashSet[n];
for (int i = 0; i < n; i++) {
disconnectedGraph[i] = new HashSet<>();
}
Kruskal.addEdge(disconnectedGraph, 0, 1, 2);
Kruskal.addEdge(disconnectedGraph, 2, 3, 4);
HashSet<Kruskal.Edge>[] result = kruskal.kruskal(disconnectedGraph);
List<List<Integer>> actualEdges = new ArrayList<>();
for (HashSet<Kruskal.Edge> edges : result) {
for (Kruskal.Edge edge : edges) {
actualEdges.add(Arrays.asList(edge.from, edge.to, edge.weight));
}
}
List<List<Integer>> expectedEdges = Arrays.asList(Arrays.asList(0, 1, 2), Arrays.asList(2, 3, 4));
assertTrue(actualEdges.containsAll(expectedEdges) && expectedEdges.containsAll(actualEdges));
}
}